Wenn Sie Ihre eigene Serialisierungsmethode implementieren, müssen Sie zuerst entscheiden, ob die Daten auf der Festplatte im Binär- oder Textformat vorliegen sollen.
Ich finde es einfacher, die Möglichkeit zu implementieren, in einem binären Format zu speichern. Die Anzahl der Funktionen, die benötigt werden, um dies zu implementieren, ist gering. Sie müssen Funktionen implementieren, die die grundlegenden Typen, Arrays mit bekannter Größe zur Kompilierzeit, dynamische Arrays und Strings schreiben können. Alles andere kann darüber hinaus gebaut werden.
Hier ist etwas sehr nah an dem, was ich vor kurzem in den Produktionscode eingegeben habe.
#include <cstring>
#include <fstream>
#include <cstddef>
#include <stdexcept>
// Class to write to a stream
struct Writer
{
std::ostream& out_;
Writer(std::ostream& out) : out_(out) {}
// Write the fundamental types
template <typename T>
void write(T number)
{
out_.write(reinterpret_cast<char const*>(&number), sizeof(number));
if (!out_)
{
throw std::runtime_error("Unable to write a number");
}
}
// Write arrays whose size is known at compile time
template <typename T, uint64_t N>
void write(T (&array)[N])
{
for(uint64_t i = 0; i < N; ++i)
{
write(array[i]);
}
}
// Write dynamic arrays
template <typename T>
void write(T array[], uint64_t size)
{
write(size);
for(uint64_t i = 0; i < size; ++i)
{
write(array[i]);
}
}
// Write strings
void write(std::string const& str)
{
write(str.c_str(), str.size());
}
void write(char const* str)
{
write(str, std::strlen(str));
}
};
// Class to read from a stream
struct Reader
{
std::ifstream& in_;
Reader(std::ifstream& in) : in_(in) {}
template <typename T>
void read(T& number)
{
in_.read(reinterpret_cast<char*>(&number), sizeof(number));
if (!in_)
{
throw std::runtime_error("Unable to read a number.");
}
}
template <typename T, uint64_t N>
void read(T (&array)[N])
{
for(uint64_t i = 0; i < N; ++i)
{
read(array[i]);
}
}
template <typename T>
void read(T*& array)
{
uint64_t size;
read(size);
array = new T[size];
for(uint64_t i = 0; i < size; ++i)
{
read(array[i]);
}
}
void read(std::string& str)
{
char* s;
read(s);
str = s;
delete [] s;
}
};
// Test the code.
#include <iostream>
void writeData(std::string const& file)
{
std::ofstream out(file);
Writer w(out);
w.write(10);
w.write(20.f);
w.write(200.456);
w.write("Test String");
}
void readData(std::string const& file)
{
std::ifstream in(file);
Reader r(in);
int i;
r.read(i);
std::cout << "i: " << i << std::endl;
float f;
r.read(f);
std::cout << "f: " << f << std::endl;
double d;
r.read(d);
std::cout << "d: " << d << std::endl;
std::string s;
r.read(s);
std::cout << "s: " << s << std::endl;
}
void testWriteAndRead(std::string const& file)
{
writeData(file);
readData(file);
}
int main()
{
testWriteAndRead("test.bin");
return 0;
}
Ausgang:
i: 10
f: 20
d: 200.456
s: Test String
Die Fähigkeit, ein Node
ist sehr einfach zu implementieren, zu schreiben und zu lesen.
void write(Writer& w, Node const& n)
{
w.write(n.leftChild);
w.write(n.rightChild);
w.write(n.value);
w.write(n.count);
w.write(n.balanceFactor);
}
void read(Reader& r, Node& n)
{
r.read(n.leftChild);
r.read(n.rightChild);
r.read(n.value);
r.read(n.count);
r.read(n.balanceFactor);
}
können Sie boost Serialisierung Bibliothek verwenden, können Sie das Tutorial von http://www.boost.org/doc/libs/1_60_0/libs/serialization/doc/tutorial.html – xiaodong