ich habe einen geodätischen Abstand von Diagrammdaten im CSV-FormatWie visualisiert man das Cluster-Ergebnis als Graph mit unterschiedlicher Farbe des Knotens basierend auf seinem Cluster?
ich es in 2D mit Multidimensionale Skalierung (MDS) und Cluster Kmedoids
mit reduzieren will Dies ist mein Code:
# coding: utf-8
import numpy as np
import csv
from sklearn import manifold
from sklearn.metrics.pairwise import pairwise_distances
import kmedoidss
rawdata = csv.reader(open('data.csv', 'r').readlines()[1:])
# Process the data into a 2D array, omitting the header row
data, labels = [], []
for row in rawdata:
labels.append(row[1])
data.append([int(i) for i in row[1:]])
#print data
# Now run very basic MDS
# Documentation here: http://scikit-learn.org/dev/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS
mds = manifold.MDS(n_components=2, dissimilarity="precomputed")
pos = mds.fit_transform(data)
# distance matrix
D = pairwise_distances(pos, metric='euclidean')
# split into c clusters
M, C = kmedoidss.kMedoids(D, 3)
print ('Data awal : ')
for index, point_idx in enumerate(pos, 1):
print(index, point_idx)
print ('\n medoids:')
for point_idx in M:
print('{} index ke - {} '.format (pos[point_idx], point_idx+1))
print('')
print('clustering result:')
for label in C:
for point_idx in C[label]:
print('cluster- {}:{} index- {}'.format(label, pos[point_idx], point_idx+1))
kmedoidss.py
import numpy as np
import random
def kMedoids(D, k, tmax=100):
# determine dimensions of distance matrix D
m, n = D.shape
# randomly initialize an array of k medoid indices
M = np.sort(np.random.choice(n, k))
# create a copy of the array of medoid indices
Mnew = np.copy(M)
# initialize a dictionary to represent clusters
C = {}
for t in xrange(tmax):
# determine clusters, i. e. arrays of data indices
J = np.argmin(D[:,M], axis=1)
for kappa in range(k):
C[kappa] = np.where(J==kappa)[0]
# update cluster medoids
for kappa in range(k):
J = np.mean(D[np.ix_(C[kappa],C[kappa])],axis=1)
j = np.argmin(J)
Mnew[kappa] = C[kappa][j]
np.sort(Mnew)
# check for convergence
if np.array_equal(M, Mnew):
break
M = np.copy(Mnew)
else:
# final update of cluster memberships
J = np.argmin(D[:,M], axis=1)
for kappa in range(k):
C[kappa] = np.where(J==kappa)[0]
# return results
return M, C
Wie visualisiert man das Cluster-Ergebnis als Graph mit unterschiedlicher Knotenfarbe basierend auf seinem Cluster?
es hat Fehler :( 'y_pred = labels.astype (np.int) Attribute: 'Liste' Objekt hat kein Attribut 'astype' ' – kikiegoguma
Das Snippet stammt von der verlinkten Webseite, dies ist nicht * Ihre * Beschriftungsliste.Sie müssen Ihre Cluster-Zuweisung in ein solches numpliges Array transformieren.' labels' ist der übliche Name in Python, und sklearn würde dies zurückgeben. Da Sie Ihre eigenen kmedoids haben, müssen Sie sie ändern, um dieses Format zu produzieren. –
was sollte ich ändern? ich wirklich verwirrt – kikiegoguma