Ich habe versucht, Ihre Beispieldaten ein wenig interessanter zu machen. Ihre Beispieldaten haben derzeit nur einen eindeutigen "Spp" pro "Cnty".
set.seed(1)
mydf <- data.frame(
Cnty = rep(c("185", "31", "189"), times = c(5, 3, 2)),
Yr = c(rep(c("1999", "2000"), times = c(3, 2)),
"1999", "1999", "2000", "2000", "2000"),
Plt = "20001",
Spp = sample(c("Bitternut", "Pignut", "WO"), 10, replace = TRUE),
DBH = runif(10, 0, 15)
)
mydf
# Cnty Yr Plt Spp DBH
# 1 185 1999 20001 Bitternut 3.089619
# 2 185 1999 20001 Pignut 2.648351
# 3 185 1999 20001 Pignut 10.305343
# 4 185 2000 20001 WO 5.761556
# 5 185 2000 20001 Bitternut 11.547621
# 6 31 1999 20001 WO 7.465489
# 7 31 1999 20001 WO 10.764278
# 8 31 2000 20001 Pignut 14.878591
# 9 189 2000 20001 Pignut 5.700528
# 10 189 2000 20001 Bitternut 11.661678
nächstes wird, wie vorgeschlagen, ist tapply
ein guter Kandidat hier. Kombinieren Sie unique
und length
, um die Daten zu erhalten, nach denen Sie suchen.
with(mydf, tapply(Spp, Cnty, FUN = function(x) length(unique(x))))
# 185 189 31
# 3 2 2
with(mydf, tapply(Spp, list(Cnty, Yr), FUN = function(x) length(unique(x))))
# 1999 2000
# 185 2 2
# 189 NA 2
# 31 1 1
Wenn Sie in einfacher Auftabellierung (nicht eindeutigen Wertes) interessiert sind, dann können Sie erkunden table
und ftable
:
with(mydf, table(Spp, Cnty))
# Cnty
# Spp 185 189 31
# Bitternut 2 1 0
# Pignut 2 1 1
# WO 1 0 2
ftable(mydf, row.vars="Spp", col.vars=c("Cnty", "Yr"))
# Cnty 185 189 31
# Yr 1999 2000 1999 2000 1999 2000
# Spp
# Bitternut 1 1 0 1 0 0
# Pignut 2 0 0 1 0 1
# WO 0 1 0 0 2 0
Willkommen SO. Teilen Sie mehr über Was Sie ausprobiert haben und wo Probleme auftreten, wird bessere Antworten liefern. Aber um Ihnen den Einstieg zu erleichtern, sind Funktionen wie "aggregate" und "tapply" hilfreich. Denken Sie daran, den Hilfetext einer Funktion mit '? aggregat' zu betrachten. – Justin