Ich habe eine Haskell-Version eines Limit-Order Buch geschrieben, diese Version Referenzierung in C geschrieben:Wie optimiere ich dieses Haskell Limit Orderbuch (mit Code, Berichten, Graphen)?
https://github.com/jordanbaucke/Limit-Order-Book/blob/master/Others/C%2B%2B/engine.c
Ein Limit-Orderbuch ist der Mechanismus, viele Lager und Währungsumrechnungen für die Berechnung Gewerke Währung verwenden und Stock.
Diese Hakkell-Version (Quellcode weiter unten) reicht 2000 zufällige Limit-Aufträge an das Orderbuch und berechnet den durchschnittlichen Ausführungspreis.
Ich habe es mit -O2 kompiliert, und das Ausführen des Programms ohne Profilerstellung dauert fast 10 Sekunden.
time ./main
"Average execution price: 15137.667036215817, 2706.0 executions"
./main 9.90s user 0.09s system 89% cpu 11.205 total
Ich habe versucht, das Programm zu setzen, um 10.000 Bestellungen zu verarbeiten, die 160 Sekunden dauern.
time ./main
"Average execution price: 15047.099824996354, 13714.0 executions"
./main 161.99s user 2.08s system 57% cpu 4:44.16 total
Was kann ich tun, um es dramatisch schneller zu machen, ohne die Funktionalität zu beeinträchtigen? Glauben Sie, dass es möglich ist, 10000 Bestellungen pro Sekunde zu verarbeiten?
Hier sind die Speichernutzung Grafiken (mit den 2000 Aufträge) erzielte mit + RTS hc/hd/hy und hp2ps:
Hier ist der Quellcode:
import Data.Array
import Data.List
import Data.Word
import Data.Maybe
import Data.Tuple
import Debug.Trace
import System.Random
import Control.Monad (replicateM)
-- Price is measured in smallest divisible unit of currency.
type Price = Word64
maximumPrice = 30000
type Quantity = Word64
type Trader a = a
type Entry a = (Quantity, Trader a)
type PricePoint a = [Entry a]
data OrderBook a = OrderBook {
pricePoints :: Array Price (PricePoint a),
minAsk :: Price,
maxBid :: Price
} deriving (Show)
data Side = Buy | Sell deriving (Eq, Show, Read, Enum, Bounded)
instance Random Side where
randomR (a, b) g =
case randomR (fromEnum a, fromEnum b) g of
(x, g') -> (toEnum x, g')
random g = randomR (minBound, maxBound) g
data Order a = Order {
side :: Side,
price :: Price,
size :: Quantity,
trader :: Trader a
} deriving (Show)
data Event a =
Execution {
buyer :: Trader a,
seller :: Trader a,
executePrice :: Price,
executeQuantity :: Quantity
} deriving (Show)
empty :: OrderBook a
empty = OrderBook {
pricePoints = array (1, maximumPrice) [(i, []) | i <- [1..maximumPrice]],
minAsk = maximumPrice,
maxBid = 0
}
insertOrder :: Order a -> OrderBook a -> OrderBook a
insertOrder (Order side price size t) (OrderBook pricePoints minAsk maxBid) =
OrderBook {
pricePoints = pricePoints // [(price, (pricePoints!price) ++ [(size, t)])],
maxBid = if side == Buy && maxBid < price then price else maxBid,
minAsk = if side == Sell && minAsk > price then price else minAsk
}
processOrder :: Order a -> OrderBook a -> (OrderBook a, [Event a])
processOrder order orderBook
| size /= 0 && price `comp` current =
let (_order, _ob, _events) = executeForPrice order{price=current} _orderBook
in (\(a,b) c -> (a,c++b)) (processOrder _order{price=price} _ob) _events
| otherwise = (insertOrder order orderBook, [])
where
Order side price size _ = order
(current, comp, _orderBook)
| side == Buy = (minAsk orderBook, (>=), orderBook{minAsk=current+1})
| side == Sell = (maxBid orderBook, (<=), orderBook{maxBid=current-1})
executeForPrice :: Order a -> OrderBook a -> (Order a, OrderBook a, [Event a])
executeForPrice order orderBook
| null pricePoint = (order, orderBook, [])
| entrySize < size = (\(a, b, c) d -> (a, b, d:c))
(executeForPrice order{size=size-entrySize} (set rest)) (execute entrySize)
| otherwise =
let entries
| entrySize > size = (entrySize-size, entryTrader):rest
| otherwise = rest
in (order{size=0}, set entries, [execute size])
where
pricePoint = (pricePoints orderBook)!price
(entrySize, entryTrader):rest = pricePoint
Order side price size trader = order
set = \p -> orderBook{pricePoints=(pricePoints orderBook)//[(price, p)]}
(buyer, seller) = (if side == Buy then id else swap) (trader, entryTrader)
execute = Execution buyer seller price
randomTraders :: IO [Int]
randomTraders = do
g <- newStdGen
return (randomRs (1, 3) g)
randomPrices :: IO [Word64]
randomPrices = do
g <- newStdGen
return (map fromIntegral $ randomRs (1 :: Int, fromIntegral maximumPrice) g)
randomSizes :: IO [Word64]
randomSizes = do
g <- newStdGen
return (map fromIntegral $ randomRs (1 :: Int, 10) g)
randomSides :: IO [Side]
randomSides = do
g <- newStdGen
return (randomRs (Buy, Sell) g)
randomOrders = do
sides <- randomSides
prices <- randomPrices
sizes <- randomSizes
traders <- randomTraders
let zipped = zip4 sides prices sizes traders
let orders = map (\(side, price, size, trader) -> Order side price size trader) zipped
return orders
main = do
orders <- randomOrders
let (orderBook, events) = foldr (\order (book, ev) -> let (b, e) = processOrder order book in (b, ev++e)) (empty, [])
(take 2000 orders)
let (total, count) = ((fromIntegral $ sum $ map executePrice events), fromIntegral $ length events)
print $ "Average execution price: " ++ show (total/count) ++ ", " ++ (show count) ++ " executions"
Hier sind die Profilierungsberichte:
ghc -rtsopts --make -O2 OrderBook.hs -o main -prof -auto-all -caf-all -fforce-recomp
time ./main +RTS -sstderr +RTS -hd -p -K100M && hp2ps -e8in -c main.hp
./main +RTS -sstderr -hd -p -K100M
"Average execution price: 15110.97202536367, 2681.0 executions"
3,184,295,808 bytes allocated in the heap
338,666,300 bytes copied during GC
5,017,560 bytes maximum residency (149 sample(s))
196,620 bytes maximum slop
14 MB total memory in use (2 MB lost due to fragmentation)
Generation 0: 4876 collections, 0 parallel, 1.98s, 2.01s elapsed
Generation 1: 149 collections, 0 parallel, 1.02s, 1.07s elapsed
INIT time 0.00s ( 0.00s elapsed)
MUT time 5.16s ( 5.24s elapsed)
GC time 3.00s ( 3.08s elapsed)
RP time 0.00s ( 0.00s elapsed)
PROF time 0.01s ( 0.01s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 8.17s ( 8.33s elapsed)
%GC time 36.7% (36.9% elapsed)
Alloc rate 617,232,166 bytes per MUT second
Productivity 63.1% of total user, 61.9% of total elapsed
./main +RTS -sstderr +RTS -hd -p -K100M 8.17s user 0.06s system 98% cpu 8.349 total
cat main.prof
Sun Feb 9 12:03 2014 Time and Allocation Profiling Report (Final)
main +RTS -sstderr -hd -p -K100M -RTS
total time = 0.64 secs (32 ticks @ 20 ms)
total alloc = 1,655,532,980 bytes (excludes profiling overheads)
COST CENTRE MODULE %time %alloc
processOrder Main 46.9 81.2
insertOrder Main 21.9 0.0
executeForPrice Main 18.8 9.7
randomPrices Main 9.4 0.1
main Main 3.1 4.5
minAsk Main 0.0 2.1
maxBid Main 0.0 2.0
individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 1 0 0.0 0.0 100.0 100.0
main Main 392 3 3.1 4.5 100.0 99.8
executePrice Main 417 2681 0.0 0.0 0.0 0.0
processOrder Main 398 5695463 46.9 81.2 87.5 95.0
executeForPrice Main 412 5695252 18.8 9.7 18.8 9.7
pricePoints Main 413 5695252 0.0 0.0 0.0 0.0
insertOrder Main 406 1999 21.9 0.0 21.9 0.0
minAsk Main 405 0 0.0 2.1 0.0 2.1
maxBid Main 400 0 0.0 2.0 0.0 2.0
randomOrders Main 393 1 0.0 0.0 9.4 0.2
randomTraders Main 397 1 0.0 0.0 0.0 0.0
randomSizes Main 396 2 0.0 0.1 0.0 0.1
randomPrices Main 395 2 9.4 0.1 9.4 0.1
randomSides Main 394 1 0.0 0.1 0.0 0.1
CAF:main14 Main 383 1 0.0 0.0 0.0 0.0
randomPrices Main 401 0 0.0 0.0 0.0 0.0
CAF:lvl42_r2wH Main 382 1 0.0 0.0 0.0 0.0
main Main 418 0 0.0 0.0 0.0 0.0
CAF:empty_rqz Main 381 1 0.0 0.0 0.0 0.0
empty Main 403 1 0.0 0.0 0.0 0.0
CAF:lvl40_r2wB Main 380 1 0.0 0.0 0.0 0.0
empty Main 407 0 0.0 0.0 0.0 0.0
CAF:lvl39_r2wz Main 379 1 0.0 0.0 0.0 0.1
empty Main 409 0 0.0 0.1 0.0 0.1
CAF:lvl38_r2wv Main 378 1 0.0 0.0 0.0 0.1
empty Main 410 0 0.0 0.1 0.0 0.1
CAF:maximumPrice Main 377 1 0.0 0.0 0.0 0.0
maximumPrice Main 402 1 0.0 0.0 0.0 0.0
CAF:lvl14_r2vF Main 350 1 0.0 0.0 0.0 0.0
executeForPrice Main 414 0 0.0 0.0 0.0 0.0
CAF:lvl12_r2vB Main 349 1 0.0 0.0 0.0 0.0
processOrder Main 415 0 0.0 0.0 0.0 0.0
CAF:lvl10_r2vx Main 348 1 0.0 0.0 0.0 0.0
processOrder Main 416 0 0.0 0.0 0.0 0.0
CAF:lvl8_r2vt Main 347 1 0.0 0.0 0.0 0.0
processOrder Main 399 0 0.0 0.0 0.0 0.0
CAF:lvl6_r2vp Main 346 1 0.0 0.0 0.0 0.0
empty Main 408 0 0.0 0.0 0.0 0.0
CAF:lvl4_r2vl Main 345 1 0.0 0.0 0.0 0.0
empty Main 411 0 0.0 0.0 0.0 0.0
CAF:lvl2_r2vh Main 344 1 0.0 0.0 0.0 0.0
empty Main 404 0 0.0 0.0 0.0 0.0
CAF GHC.Float 319 8 0.0 0.0 0.0 0.0
CAF GHC.Int 304 2 0.0 0.0 0.0 0.0
CAF GHC.IO.Handle.FD 278 2 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 239 2 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 232 1 0.0 0.0 0.0 0.0
CAF System.Random 222 1 0.0 0.0 0.0 0.0
CAF Data.Fixed 217 3 0.0 0.0 0.0 0.0
CAF Data.Time.Clock.POSIX 214 2 0.0 0.0 0.0 0.0
Ich bin ein Neuling in Haskell. Wie interpretiere ich diese Berichte, was bedeuten sie und was kann ich tun, um meinen Code schneller zu machen?
Die erste Sache zu betrachten wäre Ihre Datenstruktur für 'pricePoints'. Ich bin mir nicht sicher, wie rein 'Array' funktioniert, aber ich denke, dass das Aktualisieren von Elementen jedes Mal eine Wiederholung des Arrays erzwingt. Versuchen Sie es in der ersten Instanz durch eine 'Data.Map' zu ersetzen und sehen Sie, ob Sie eine massive Beschleunigung erhalten. –
Danke! Die Verwendung von Data.Map führte zu einer Verbesserung von ca. 10%. Nicht massiv, aber hilft! 'Zeit ./main " Durchschnittlicher Ausführungspreis: 15480.460594795539, 2690.0 Ausführungen " ./main 9.24s Benutzer 0.05s System 96% cpu 9.585 Gesamt' – Eric
Ich bin überrascht, dass es so klein war. Können Sie den Profilbericht für die Version 'Data.Map' einfügen? Vielleicht auf lpaste.org, um zu vermeiden, Ihre Frage zu überladen. –