Ich habe ein Dataset, das unter denen ich aus einer Datei in Python streamen könnte. Ich möchte Pandas verwenden, um einen HLOC-Datenchart für jede Minute zu erstellen, beginnend mit der Zeit Null mit 9:46 unter Verwendung der asof-Methode .... Ich würde auch gerne wissen, wie man Daten in einen Pandas-Datenframe als Updates streamt . Ist das möglich?So erstellen Sie hoch niedrig öffnen schließen Diagramm mit Pandas
2012-03-15 09:45:00 139.8000
2012-03-15 09:45:11 139.7900
2012-03-15 09:45:22 139.7850
2012-03-15 09:45:33 139.8100
2012-03-15 09:45:44 139.8000
2012-03-15 09:45:55 139.8000
2012-03-15 09:46:06 139.8100
2012-03-15 09:46:16 139.8500
2012-03-15 09:46:27 139.8400
2012-03-15 09:46:38 139.8300
2012-03-15 09:46:49 139.8000
2012-03-15 09:46:59 139.8200
2012-03-15 09:47:10 139.8200
2012-03-15 09:47:21 139.8500
2012-03-15 09:47:32 139.8600
2012-03-15 09:47:42 139.8680
2012-03-15 09:47:53 139.8600
2012-03-15 09:48:04 139.8620
2012-03-15 09:48:15 139.8500
2012-03-15 09:48:25 139.8600
2012-03-15 09:48:36 139.8400
2012-03-15 09:48:47 139.8197
2012-03-15 09:48:58 139.8200
2012-03-15 09:49:08 139.8000
2012-03-15 09:49:19 139.8300
2012-03-15 09:49:30 139.8199
2012-03-15 09:49:41 139.8300
2012-03-15 09:49:52 139.8600
2012-03-15 09:50:02 139.8600
2012-03-15 09:50:13 139.8800
2012-03-15 09:50:24 139.9000
2012-03-15 09:50:35 139.9200
2012-03-15 09:50:45 139.9300
2012-03-15 09:50:56 139.9300
2012-03-15 09:51:07 139.9290
2012-03-15 09:51:18 139.9100
2012-03-15 09:51:28 139.9200
2012-03-15 09:51:39 139.9200
2012-03-15 09:51:50 139.9370
2012-03-15 09:52:01 139.9386
2012-03-15 09:52:11 139.9400
2012-03-15 09:52:22 139.9590
2012-03-15 09:52:33 139.9650
2012-03-15 09:52:44 139.9600
2012-03-15 09:52:54 139.9800
2012-03-15 09:53:05 139.9900
2012-03-15 09:53:16 139.9800
2012-03-15 09:53:27 139.9800
2012-03-15 09:53:37 139.9700
2012-03-15 09:53:48 139.9900
2012-03-15 09:53:59 139.9884
2012-03-15 09:54:10 139.9900
2012-03-15 09:54:20 139.9900
2012-03-15 09:54:31 140.0100
2012-03-15 09:54:42 140.0000
2012-03-15 09:54:53 139.9850
2012-03-15 09:55:03 139.9900
2012-03-15 09:55:14 140.0000
2012-03-15 09:55:25 140.0090
2012-03-15 09:55:36 140.0000
2012-03-15 09:55:47 139.9890
2012-03-15 09:55:57 139.9900
2012-03-15 09:56:08 139.9900
2012-03-15 09:56:19 140.0000
2012-03-15 09:56:30 140.0400
2012-03-15 09:56:40 140.0200
2012-03-15 09:56:51 140.0200
2012-03-15 09:57:02 140.0300
2012-03-15 09:57:13 140.0400
2012-03-15 09:57:23 140.0390
2012-03-15 09:57:34 140.0300
2012-03-15 09:57:45 140.0200
2012-03-15 09:57:56 140.0200
2012-03-15 09:58:06 140.0400
2012-03-15 09:58:17 140.0300
2012-03-15 09:58:28 140.0400
2012-03-15 09:58:39 140.0300
2012-03-15 09:58:49 140.0300
2012-03-15 09:59:00 140.0500
2012-03-15 09:59:11 140.0400
2012-03-15 09:59:22 140.0200
2012-03-15 09:59:32 140.0300
2012-03-15 09:59:43 140.0300
2012-03-15 09:59:54 140.0200
2012-03-15 10:00:05 140.0100
2012-03-15 10:00:15 140.0100
2012-03-15 10:00:26 140.0700
2012-03-15 10:00:37 140.0900
2012-03-15 10:00:48 140.0899
2012-03-15 10:00:58 140.0700
2012-03-15 10:01:09 140.0800
2012-03-15 10:01:20 140.0300
2012-03-15 10:01:31 140.0200
2012-03-15 10:01:41 140.0100
2012-03-15 10:01:52 139.9800
2012-03-15 10:02:03 139.9300
2012-03-15 10:02:14 139.9900
2012-03-15 10:02:25 140.0200
2012-03-15 10:02:35 140.0000
2012-03-15 10:02:46 139.9700
2012-03-15 10:02:57 139.9300
2012-03-15 10:03:08 139.9300
2012-03-15 10:03:18 139.9200
2012-03-15 10:03:29 139.9700
2012-03-15 10:03:40 139.9700
2012-03-15 10:03:51 139.9600
2012-03-15 10:04:01 139.9700
2012-03-15 10:04:12 139.9200
2012-03-15 10:04:23 139.9100
2012-03-15 10:04:34 139.9200
2012-03-15 10:04:44 139.9100
2012-03-15 10:04:55 139.9100
2012-03-15 10:05:06 139.8900
2012-03-15 10:05:17 139.9000
2012-03-15 10:05:27 139.9900
2012-03-15 10:05:38 139.9700
2012-03-15 10:05:49 139.9521
2012-03-15 10:06:00 139.9700
2012-03-15 10:06:10 139.9800
2012-03-15 10:06:21 140.0200
2012-03-15 10:06:32 140.0400
2012-03-15 10:06:43 140.0400
2012-03-15 10:06:53 140.0300
2012-03-15 10:07:04 140.0400
2012-03-15 10:07:15 139.9893
2012-03-15 10:07:26 140.0100
2012-03-15 10:07:36 140.0100
2012-03-15 10:07:47 140.0010
2012-03-15 10:07:58 139.9900
2012-03-15 10:08:09 140.0100
2012-03-15 10:08:19 139.9800
2012-03-15 10:08:30 139.9899
2012-03-15 10:08:41 140.0000
2012-03-15 10:08:52 140.0000
2012-03-15 10:09:03 139.9710
2012-03-15 10:09:13 139.9710
2012-03-15 10:09:24 139.9700
2012-03-15 10:09:35 139.9700
2012-03-15 10:09:46 139.9700
2012-03-15 10:09:56 139.9614
2012-03-15 10:10:07 139.9700
2012-03-15 10:10:18 139.9400
2012-03-15 10:10:29 139.9100
2012-03-15 10:10:39 139.9300
2012-03-15 10:10:50 139.9400
2012-03-15 10:11:01 139.9800
2012-03-15 10:11:12 140.0000
2012-03-15 10:11:22 139.9700
2012-03-15 10:11:33 139.9400
2012-03-15 10:11:44 139.8900
2012-03-15 10:11:55 139.8800
2012-03-15 10:12:05 139.9000
2012-03-15 10:12:16 139.9100
2012-03-15 10:12:27 139.9100
2012-03-15 10:12:38 139.9000
2012-03-15 10:12:48 139.9300
2012-03-15 10:12:59 139.9200
2012-03-15 10:13:10 139.9300
2012-03-15 10:13:21 139.9500
2012-03-15 10:13:31 139.9500
2012-03-15 10:13:42 139.9700
2012-03-15 10:13:53 139.9600
2012-03-15 10:14:04 139.9700
2012-03-15 10:14:14 139.9400
2012-03-15 10:14:25 140.0300
Wie bekomme ich 0.8.0. Bitte zeigen Sie auf den Link. Ich kann zu Github, wie ziehe ich die dev-Version. Oben, wie aktualisiere ich die Tabelle neue Daten, ohne die gesamte Tabelle neu zu erstellen. Gibt es eine Add-to-Table-Methode .... Denken ..... neue Daten nehmen, verarbeiten (ts.convert). append table..numpy wird zum Array hinzugefügt. jede Hilfe hier. – SlyFly
Sie können Daten (mit einem neuen Objekt) mit df.append (new_data) anhängen, aber das ist nicht besonders effizient –