Ich bin ein Anfänger versucht, map-reduce mit Java zu lernen. Ich versuche, das Wortzählungsbeispiel mit dem Oozie-Koordinator auszuführen. Ich erhalte einen Casting-Fehler. Es wäre toll, wenn mir jemand mit diesem Fehler helfen würde.Fehler: java.lang.ClassCastException: WordCountTest.WordCountTest kann nicht in org.apache.hadoop.mapreduce.Mapper
"Error: java.lang.ClassCastException: wordCountTest.WordCountTest cannot be cast to org.apache.hadoop.mapreduce.Mapper"
Hier ist mein WordCountTest.java Snippet:
package wordCountTest;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class WordCountTest {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf,"WordCount");
job.setJarByClass(WordCountTest.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
Auch meine workflow.xml Datei:
<?xml version="1.0" encoding="UTF-8"?>
<workflow-app xmlns="uri:oozie:workflow:0.1" name="map-reduce-wf">
<start to="mr-node" />
<action name="mr-node">
<map-reduce>
<job-tracker>${jobTracker}</job-tracker>
<name-node>${nameNode}</name-node>
<configuration>
<property>
<name>mapred.mapper.new-api</name>
<value>true</value>
</property>
<property>
<name>mapred.reducer.new-api</name>
<value>true</value>
</property>
<property>
<name>mapred.job.queue.name</name>
<value>${queueName}</value>
</property>
<property>
<name>mapreduce.map.class</name>
<value>wordCountTest.WordCountTest.TokenizerMapper</value>
</property>
<property>
<name>mapreduce.reduce.class</name>
<value>wordCountTest.WordCountTest.IntSumReducer</value>
</property>
<property>
<name>mapreduce.combine.class</name>
<value>wordCountTestEmr.WordCountTest.IntSumReducer</value>
</property>
<property>
<name>mapred.output.key.class</name>
<value>org.apache.hadoop.io.Text</value>
</property>
<property>
<name>mapred.output.value.class</name>
<value>org.apache.hadoop.io.IntWritable</value>
</property>
<property>
<name>mapred.input.dir</name>
<value>/user/ahegde/testemr/InputData/</value>
</property>
<property>
<name>mapred.output.dir</name>
<value>/user/ahegde/testemr/OutputData</value>
</property>
</configuration>
</map-reduce>
<ok to="end" />
<error to="fail" />
</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end" />
</workflow-app>
überprüfen Sie diese [link] (http://stackoverflow.com/questions/21722173/getting-javal-lang-classcastexception-class-java-lang-string-in-running-a-einfach) –
Warum Sie wollen Mapper- und Reducer-Klassen erstellen Statisch? Könnten Sie bitte statische Kartenklassen entfernen und Klassen reduzieren und wenn möglich auch herausnehmen und als separate Klassen im selben Paket erstellen und ausprobieren. – Aditya