gut hier ist mein Python-Code, der alle Sequenzen von Elementen/Nummern für die gleiche BST produziert. für die Logik i auf das Buch von Gayle Laakmann Mcdowell die Codierung Interview Cracken bezeichnet
from binarytree import Node, bst, pprint
def wavelist_list(first, second, wave, prefix):
if first:
fl = len(first)
else:
fl = 0
if second:
sl = len(second)
else:
sl = 0
if fl == 0 or sl == 0:
tmp = list()
tmp.extend(prefix)
if first:
tmp.extend(first)
if second:
tmp.extend(second)
wave.append(tmp)
return
if fl:
fitem = first.pop(0)
prefix.append(fitem)
wavelist_list(first, second, wave, prefix)
prefix.pop()
first.insert(0, fitem)
if sl:
fitem = second.pop(0)
prefix.append(fitem)
wavelist_list(first, second, wave, prefix)
prefix.pop()
second.insert(0, fitem)
def allsequences(root):
result = list()
if root == None:
return result
prefix = list()
prefix.append(root.value)
leftseq = allsequences(root.left)
rightseq = allsequences(root.right)
lseq = len(leftseq)
rseq = len(rightseq)
if lseq and rseq:
for i in range(lseq):
for j in range(rseq):
wave = list()
wavelist_list(leftseq[i], rightseq[j], wave, prefix)
for k in range(len(wave)):
result.append(wave[k])
elif lseq:
for i in range(lseq):
wave = list()
wavelist_list(leftseq[i], None, wave, prefix)
for k in range(len(wave)):
result.append(wave[k])
elif rseq:
for j in range(rseq):
wave = list()
wavelist_list(None, rightseq[j], wave, prefix)
for k in range(len(wave)):
result.append(wave[k])
else:
result.append(prefix)
return result
if __name__=="__main__":
n = int(input("what is height of tree?"))
my_bst = bst(n)
pprint(my_bst)
seq = allsequences(my_bst)
print("All sequences")
for i in range(len(seq)):
print("set %d = " %(i+1), end="")
print(seq[i])
example output:
what is height of tree?3
___12
/ \
__ 6 13
/ \ \
0 11 14
\
2
All sequences
set 1 = [12, 6, 0, 2, 11, 13, 14]
set 2 = [12, 6, 0, 2, 13, 11, 14]
set 3 = [12, 6, 0, 2, 13, 14, 11]
set 4 = [12, 6, 0, 13, 2, 11, 14]
set 5 = [12, 6, 0, 13, 2, 14, 11]
set 6 = [12, 6, 0, 13, 14, 2, 11]
set 7 = [12, 6, 13, 0, 2, 11, 14]
set 8 = [12, 6, 13, 0, 2, 14, 11]
set 9 = [12, 6, 13, 0, 14, 2, 11]
set 10 = [12, 6, 13, 14, 0, 2, 11]
set 11 = [12, 13, 6, 0, 2, 11, 14]
set 12 = [12, 13, 6, 0, 2, 14, 11]
set 13 = [12, 13, 6, 0, 14, 2, 11]
set 14 = [12, 13, 6, 14, 0, 2, 11]
set 15 = [12, 13, 14, 6, 0, 2, 11]
set 16 = [12, 6, 0, 11, 2, 13, 14]
set 17 = [12, 6, 0, 11, 13, 2, 14]
set 18 = [12, 6, 0, 11, 13, 14, 2]
set 19 = [12, 6, 0, 13, 11, 2, 14]
set 20 = [12, 6, 0, 13, 11, 14, 2]
set 21 = [12, 6, 0, 13, 14, 11, 2]
set 22 = [12, 6, 13, 0, 11, 2, 14]
set 23 = [12, 6, 13, 0, 11, 14, 2]
set 24 = [12, 6, 13, 0, 14, 11, 2]
set 25 = [12, 6, 13, 14, 0, 11, 2]
set 26 = [12, 13, 6, 0, 11, 2, 14]
set 27 = [12, 13, 6, 0, 11, 14, 2]
set 28 = [12, 13, 6, 0, 14, 11, 2]
set 29 = [12, 13, 6, 14, 0, 11, 2]
set 30 = [12, 13, 14, 6, 0, 11, 2]
set 31 = [12, 6, 11, 0, 2, 13, 14]
set 32 = [12, 6, 11, 0, 13, 2, 14]
set 33 = [12, 6, 11, 0, 13, 14, 2]
set 34 = [12, 6, 11, 13, 0, 2, 14]
set 35 = [12, 6, 11, 13, 0, 14, 2]
set 36 = [12, 6, 11, 13, 14, 0, 2]
set 37 = [12, 6, 13, 11, 0, 2, 14]
set 38 = [12, 6, 13, 11, 0, 14, 2]
set 39 = [12, 6, 13, 11, 14, 0, 2]
set 40 = [12, 6, 13, 14, 11, 0, 2]
set 41 = [12, 13, 6, 11, 0, 2, 14]
set 42 = [12, 13, 6, 11, 0, 14, 2]
set 43 = [12, 13, 6, 11, 14, 0, 2]
set 44 = [12, 13, 6, 14, 11, 0, 2]
set 45 = [12, 13, 14, 6, 11, 0, 2]
deutlich machen. Sie meinen nein der binären Baumdarstellung für gegebene Knoten? – Dineshkumar