Ich versuche, ein System von Polynomgleichungen zu lösen, die durch den Vergleich von Koeffizienten verschiedener Polynome erhalten werden.Erhalten Sie nur eine einzige Lösung für System von Polynomen in Sage
# Statement of Problem:
# We are attempting to find complex numbers a, b, c, d, e, J, u, v, r, s where
# ((a*x + c)^2)*(x^3 + (3K)*x + 2K) - ((b*x^2 + d*x + e)^2) = a^2*(x - r)^2*(x - s)^3 and
# ((a*x + c)^2)*(x^3 + (3K)*x + 2K)) - ((b*x^2 + d*x + e - 1)^2) = a^2*(x - u)*(x - v)^4
R.<x> = CC['x']
a, b, c, d, e, r, s, u, v, K = var('a, b, c, d, e, r, s, u, v, K')
y2 = x^3 + (3*K)*x + 2*K
q0 = ((a*x + c)^2)*(y2) - ((b*x^2 + d*x + e)^2)
p0 = (a^2)*((x-r)^2)*((x-s)^3)
t = (b^2 - 2*a*c)/a^2
Q0 = q0.expand()
P0 = p0.expand()
P0 = P0.substitute(s = ((t - 2*r)/3))
Relations0 = []
i = 0
while i < 6:
Relations0.append(P0.coefficient(x, n = i) - Q0.coefficient(x, n = i))
i = i+1
q1 = ((a*x + c)^2)*(y2) - ((b*x^2 + d*x + e - 1)^2)
p1 = (a^2)*(x-u)*((x-v)^4)
Q1 = q1.expand()
P1 = p1.expand()
P1 = P1.substitute(u = t - 4*v)
Relations1 = []
i = 0
while i < 6:
Relations1.append(P1.coefficient(x, n = i) - Q1.coefficient(x, n = i))
i = i+1
Relations = Relations0 + Relations1
Sage Telling das System von Polynomen zu lösen solve(Relations, a,b,c,d,e,r,v,K)
Verwendung scheint sehr ineffizient und hat nur führte zu Sage seine Speichergrenze überschritten hat. Darüber hinaus ist der Versuch, die Anzahl der Gleichungen und Variablen durch Lösen für einige der Variablen zu reduzieren, ebenfalls ineffizient und hat keine fruchtbaren Ergebnisse ergeben. Da sich der Versuch, alle Lösungen zu finden, als so schwierig erwiesen hat, gibt es eine Möglichkeit, nur eine einzige Lösung zu finden?