Meine Umgebung verwendet Opencv 3.1.0 und Python 2.7.11.
Hier ist der Code, der nach Bildern in einem anderen Bild sucht, in dem die Vorlage Transparenz verwendet (Alphakanal). Ich hoffe, das kann dir helfen.
def getMultiFullInfo(all_matches,w,h):
#This function will rearrange the data and calculate the tuple
# for the square and the center and the tolerance for each point
result = []
for match in all_matches:
tlx = match[0]
tly = match[1]
top_left = (tlx,tly)
brx = match[0] + w
bry = match[1] + h
bottom_right = (brx,bry)
centerx = match[0] + w/2
centery = match[1] + h/2
center = [centerx,centery]
result.append({'top_left':top_left,'bottom_right':bottom_right,'center':center,'tolerance':match[2]})
return result
def getMulti(res, tolerance,w,h):
#We get an opencv image in the form of a numpy array and we need to
# find all the occurances in there knowing that 2 squares cannot intersect
#This will give us exactly the matches that are unique
#First we need to get all the points where value is >= tolerance
#This wil get sometimes some squares that vary only from some pixels and that are overlapping
all_matches_full = np.where (res >= tolerance)
logging.debug('*************Start of getMulti function')
logging.debug('All >= tolerance')
logging.debug(all_matches_full)
#Now we need to arrange it in x,y coordinates
all_matches_coords = []
for pt in zip(*all_matches_full[::-1]):
all_matches_coords.append([pt[0],pt[1],res[pt[1]][pt[0]]])
logging.debug('In coords form')
logging.debug(all_matches_coords)
#Let's sort the new array
all_matches_coords = sorted(all_matches_coords)
logging.debug('Sorted')
logging.debug(all_matches_coords)
#This function will be called only when there is at least one match so if matchtemplate returns something
#This means we have found at least one record so we can prepare the analysis and loop through each records
all_matches = [[all_matches_coords[0][0],all_matches_coords[0][1],all_matches_coords[0][2]]]
i=1
for pt in all_matches_coords:
found_in_existing = False
logging.debug('%s)',i)
for match in all_matches:
logging.debug(match)
#This is the test to make sure that the square we analyse doesn't overlap with one of the squares already found
if pt[0] >= (match[0]-w) and pt[0] <= (match[0]+w) and pt[1] >= (match[1]-h) and pt[1] <= (match[1]+h):
found_in_existing = True
if pt[2] > match[2]:
match[0] = pt[0]
match[1] = pt[1]
match[2] = res[pt[1]][pt[0]]
if not found_in_existing:
all_matches.append([pt[0],pt[1],res[pt[1]][pt[0]]])
i += 1
logging.debug('Final')
logging.debug(all_matches)
logging.debug('Final with all info')
#Before returning the result, we will arrange it with data easily accessible
all_matches = getMultiFullInfo(all_matches,w,h)
logging.debug(all_matches)
logging.debug('*************End of getMulti function')
return all_matches
def checkPicture(screenshot,templateFile, tolerance, multiple = False):
#This is an intermediary function so that the actual function doesn't include too much specific arguments
#We open the config file
configFile = 'test.cfg'
config = SafeConfigParser()
config.read(configFile)
basepics_dir = config.get('general', 'basepics_dir')
debug_dir = config.get('general', 'debug_dir')
font = cv2.FONT_HERSHEY_PLAIN
#The value -1 means we keep the file as is meaning with color and alpha channel if any
# btw, 0 means grayscale and 1 is color
template = cv2.imread(basepics_dir+templateFile,-1)
#Now we search in the picture
result = findPicture(screenshot,template, tolerance, multiple)
#If it didn't get any result, we log the best value
if not result['res']:
logging.debug('Best value found for %s is: %f',templateFile,result['best_val'])
elif logging.getLogger().getEffectiveLevel() == 10:
screenshot_with_rectangle = screenshot.copy()
for pt in result['points']:
cv2.rectangle(screenshot_with_rectangle, pt['top_left'], pt['bottom_right'], 255, 2)
fileName_top_left = (pt['top_left'][0],pt['top_left'][1]-10)
cv2.putText(screenshot_with_rectangle,str(pt['tolerance'])[:4],fileName_top_left, font, 1,(255,255,255),2)
#Now we save to the file if needed
filename = time.strftime("%Y%m%d-%H%M%S") + '_' + templateFile[:-4] + '.jpg'
cv2.imwrite(debug_dir + filename, screenshot_with_rectangle)
result['name']=templateFile
return result
def extractAlpha(img, hardedge = True):
if img.shape[2]>3:
logging.debug('Mask detected')
channels = cv2.split(img)
mask = np.array(channels[3])
if hardedge:
for idx in xrange(len(mask[0])):
if mask[0][idx] <=128:
mask[0][idx] = 0
else:
mask[0][idx] = 255
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
return {'res':True,'image':img,'mask':mask}
else:
return {'res':False,'image':img}
def findPicture(screenshot,template, tolerance, multiple = False):
#This function will work with color images 3 channels minimum
#The template can have an alpha channel and we will extract it to have the mask
logging.debug('Looking for %s' , template)
logging.debug('Tolerance to check is %f' , tolerance)
logging.debug('*************Start of checkPicture')
h = template.shape[0]
w = template.shape[1]
#We will now extract the alpha channel
tmpl = extractAlpha(template)
logging.debug('Image width: %d - Image heigth: %d',w,h)
# the method used for comparison, can be ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
meth = 'cv2.TM_CCORR_NORMED'
method = eval(meth)
# Apply template Matching
if tmpl['res']:
res = cv2.matchTemplate(screenshot,tmpl['image'],method, mask = tmpl['mask'])
else:
res = cv2.matchTemplate(screenshot,tmpl['image'],method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
best_val = 1 - min_val
else:
top_left = max_loc
best_val = max_val
#We need to ensure we found at least one match otherwise we return false
if best_val >= tolerance:
if multiple:
#We need to find all the time the image is found
all_matches = getMulti(res, float(tolerance),int(w),int(h))
else:
bottom_right = (top_left[0] + w, top_left[1] + h)
center = (top_left[0] + (w/2), top_left[1] + (h/2))
all_matches = [{'top_left':top_left,'bottom_right':bottom_right,'center':center,'tolerance':best_val}]
#point will be in the form: [{'tolerance': 0.9889718890190125, 'center': (470, 193), 'bottom_right': (597, 215), 'top_left': (343, 172)}]
logging.debug('The points found will be:')
logging.debug(all_matches)
logging.debug('*************End of checkPicture')
return {'res': True,'points':all_matches}
else:
logging.debug('Could not find a value above tolerance')
logging.debug('*************End of checkPicture')
return {'res': False,'best_val':best_val}
Haben Sie 'image' geladen? – Miki
ja. Alle Bilder werden richtig geladen. Ich denke, die Bildformate sind falsch basierend auf den Fehler geworfen? – jaredrada
wahrscheinlich. Versuchen Sie, mit 'IMREAD_COLOR' zu laden, um zu sehen, ob das das Problem ist. – Miki