2016-08-04 26 views
1

Ich suche gerne einen minimalen Spannbaum (oder sogar Wald) in einem gerichteten Graphen (der manchmal einen Zyklus haben könnte). Der eine erklärt here hat einige Fehler. Gibt es ein Paket/Code für diesen Algorithmus in Python, der tatsächlich funktioniert?Chu-Liu Edmonds Algorithmus (für gerichtetes Diagramm)

+0

Jede Hilfe wird geschätzt. – Erin

Antwort

1

Obwohl ich es nicht verwendet habe, ist here eine Implementierung von GitHub. Ich habe die Essenz davon unten angehängt. Da es sich um ein GitHub-Repository handelt, kann sich das ändern, daher ist es besser, den Code von dort zu verwenden. Wenn Sie dies verwenden, bitte geben Sie dem Autor: Martin-Louis Bright.

import sys 


def _input(filename): 
    prices = {} 
    names = {} 

    for line in file(filename).readlines(): 
     (name, src, dst, price) = line.rstrip().split() 
     name = int(name.replace('M','')) 
     src = int(src.replace('C','')) 
     dst = int(dst.replace('C','')) 
     price = int(price) 
     t = (src,dst) 
     if t in prices and prices[t] <= price: 
      continue 
     prices[t] = price 
     names[t] = name 

    return prices,names 

def _load(arcs,weights): 
    g = {} 
    for (src,dst) in arcs: 
     if src in g: 
      g[src][dst] = weights[(src,dst)] 
     else: 
      g[src] = { dst : weights[(src,dst)] } 
    return g 

def _reverse(graph): 
    r = {} 
    for src in graph: 
     for (dst,c) in graph[src].items(): 
      if dst in r: 
       r[dst][src] = c 
      else: 
       r[dst] = { src : c } 
    return r 

def _getCycle(n,g,visited=set(),cycle=[]): 
    visited.add(n) 
    cycle += [n] 
    if n not in g: 
     return cycle 
    for e in g[n]: 
     if e not in visited: 
      cycle = _getCycle(e,g,visited,cycle) 
    return cycle 

def _mergeCycles(cycle,G,RG,g,rg): 
    allInEdges = [] 
    minInternal = None 
    minInternalWeight = sys.maxint 

    # find minimal internal edge weight 
    for n in cycle: 
     for e in RG[n]: 
      if e in cycle: 
       if minInternal is None or RG[n][e] < minInternalWeight: 
        minInternal = (n,e) 
        minInternalWeight = RG[n][e] 
        continue 
      else: 
       allInEdges.append((n,e))   

    # find the incoming edge with minimum modified cost 
    minExternal = None 
    minModifiedWeight = 0 
    for s,t in allInEdges: 
     u,v = rg[s].popitem() 
     rg[s][u] = v 
     w = RG[s][t] - (v - minInternalWeight) 
     if minExternal is None or minModifiedWeight > w: 
      minExternal = (s,t) 
      minModifiedWeight = w 

    u,w = rg[minExternal[0]].popitem() 
    rem = (minExternal[0],u) 
    rg[minExternal[0]].clear() 
    if minExternal[1] in rg: 
     rg[minExternal[1]][minExternal[0]] = w 
    else: 
     rg[minExternal[1]] = { minExternal[0] : w } 
    if rem[1] in g: 
     if rem[0] in g[rem[1]]: 
      del g[rem[1]][rem[0]] 
    if minExternal[1] in g: 
     g[minExternal[1]][minExternal[0]] = w 
    else: 
     g[minExternal[1]] = { minExternal[0] : w } 


def mst(root,G): 


    RG = _reverse(G) 
    if root in RG: 
     RG[root] = {} 
    g = {} 
    for n in RG: 
     if len(RG[n]) == 0: 
      continue 
     minimum = sys.maxint 
     s,d = None,None 
     for e in RG[n]: 
      if RG[n][e] < minimum: 
       minimum = RG[n][e] 
       s,d = n,e 
     if d in g: 
      g[d][s] = RG[s][d] 
     else: 
      g[d] = { s : RG[s][d] } 

    cycles = [] 
    visited = set() 
    for n in g: 
     if n not in visited: 
      cycle = _getCycle(n,g,visited) 
      cycles.append(cycle) 

    rg = _reverse(g) 
    for cycle in cycles: 
     if root in cycle: 
      continue 
     _mergeCycles(cycle, G, RG, g, rg) 

    return g 


if __name__ == "__main__": 
    try: 
     filename = sys.argv[1] 
     root = sys.argv[2] 
    except IndexError: 
     sys.stderr.write('no input and/or root node specified\n') 
     sys.stderr.write('usage: python edmonds.py <file> <root>\n') 
     sys.exit(1) 

    prices,names = _input(filename) 
    g = _load(prices,prices) 
    h = mst(int(root),g) 
    for s in h: 
     for t in h[s]: 
      print "%d-%d" % (s,t) 
+1

Aktualisiert, danke für den Kommentar. – user3693922