Ich versuche, einen Datenrahmen in einem CSV direkt von Ipython Console zu drucken, aber ich bekomme dieses Symbol und dann nichts "...:". Was bedeutet das Symbol?Was bedeutet "...:" in der Ipython-Konsole Anakonda?
Gibt es trotzdem ich kann meine csv zum Drucken zwingen?
Code:
import ET_Client
import pandas as pd
AggreateDF = pd.DataFrame()
try:
debug = False
stubObj = ET_Client.ET_Client(False, debug)
print '>>>BounceEvents'
getBounceEvent = ET_Client.ET_BounceEvent()
getBounceEvent.auth_stub = stubObj
getResponse1 = getBounceEvent.get()
ResponseResultsBounces = getResponse1.results
Results_Message = getResponse1.message
print "This is orginial " + str(Results_Message)
#print ResponseResultsBounces
i = 1
while (Results_Message == 'MoreDataAvailable'):
if i > 5: break
print Results_Message
results1 = getResponse1.results
i = i + 1
ClientIDBounces = []
partner_keys1 = []
created_dates1 = []
modified_date1 = []
ID1 = []
ObjectID1 = []
SendID1 = []
SubscriberKey1 = []
EventDate1 = []
EventType1 = []
TriggeredSendDefinitionObjectID1 = []
BatchID1 = []
SMTPCode = []
BounceCategory = []
SMTPReason = []
BounceType = []
for BounceEvent in ResponseResultsBounces:
ClientIDBounces.append(str(BounceEvent['Client']['ID']))
partner_keys1.append(BounceEvent['PartnerKey'])
created_dates1.append(BounceEvent['CreatedDate'])
modified_date1.append(BounceEvent['ModifiedDate'])
ID1.append(BounceEvent['ID'])
ObjectID1.append(BounceEvent['ObjectID'])
SendID1.append(BounceEvent['SendID'])
SubscriberKey1.append(BounceEvent['SubscriberKey'])
EventDate1.append(BounceEvent['EventDate'])
EventType1.append(BounceEvent['EventType'])
TriggeredSendDefinitionObjectID1.append(BounceEvent['TriggeredSendDefinitionObjectID'])
BatchID1.append(BounceEvent['BatchID'])
SMTPCode.append(BounceEvent['SMTPCode'])
BounceCategory.append(BounceEvent['BounceCategory'])
SMTPReason.append(BounceEvent['SMTPReason'])
BounceType.append(BounceEvent['BounceType'])
df1 = pd.DataFrame({'ClientID': ClientIDBounces, 'PartnerKey': partner_keys1,
'CreatedDate' : created_dates1, 'ModifiedDate': modified_date1,
'ID':ID1, 'ObjectID': ObjectID1,'SendID':SendID1,'SubscriberKey':SubscriberKey1,
'EventDate':EventDate1,'EventType':EventType1,'TriggeredSendDefinitionObjectID':TriggeredSendDefinitionObjectID1,
'BatchID':BatchID1,'SMTPCode':SMTPCode,'BounceCategory':BounceCategory,'SMTPReason':SMTPReason,'BounceType':BounceType})
#print(df1['ID'].max())
AggreateDF = AggreateDF.append(df1)
print(AggreateDF)
#print df1
df_masked1 = df1[(df1.EventDate > "2016-02-20") & (df1.EventDate < "2016-07-25")]
Code zu Ihrer Frage hinzufügen. Wir können Ihnen mit so wenig Informationen nicht helfen. Es ist auch eine gute Idee, ein Beispiel für Ihr gewünschtes Ergebnis und das tatsächliche Ergebnis zu geben. – HolyDanna
Es bedeutet, dass die Ausgabe abgeschnitten ist, http://pandas.pydata.org/pandas-docs/stable/options.html –
@HolyDanna muss den Code vergessen haben. – RustyShackleford