Gruppierung Ich versuche, eine einfache Transformation von gemeinsamen Crawl-Daten unter Verwendung von Spark-Host auf einem EC2 mit this guide, mein Code sieht wie folgt aus auszuführen:Funken läuft Speicher aus, wenn sie durch Schlüssel
package ccminer
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
object ccminer {
val english = "english|en|eng"
val spanish = "es|esp|spa|spanish|espanol"
val turkish = "turkish|tr|tur|turc"
val greek = "greek|el|ell"
val italian = "italian|it|ita|italien"
val all = (english :: spanish :: turkish :: greek :: italian :: Nil).mkString("|")
def langIndep(s: String) = s.toLowerCase().replaceAll(all, "*")
def main(args: Array[String]): Unit = {
if (args.length != 3) {
System.err.println("Bad command line")
System.exit(-1)
}
val cluster = "spark://???"
val sc = new SparkContext(cluster, "Common Crawl Miner",
System.getenv("SPARK_HOME"), Seq("/root/spark/ccminer/target/scala-2.10/cc-miner_2.10-1.0.jar"))
sc.sequenceFile[String, String](args(0)).map {
case (k, v) => (langIndep(k), v)
}
.groupByKey(args(2).toInt)
.filter {
case (_, vs) => vs.size > 1
}
.saveAsTextFile(args(1))
}
}
Und ich bin mit es mit dem Befehl wie folgt:
sbt/sbt "run-main ccminer.ccminer s3n://aws-publicdatasets/common-crawl/parse-output/segment/1341690165636/textData-* s3n://parallelcorpus/out/ 2000"
Aber sehr schnell scheitert es Fehler mit als
java.lang.OutOfMemoryError: Java heap space
at com.ning.compress.BufferRecycler.allocEncodingBuffer(BufferRecycler.java:59)
at com.ning.compress.lzf.ChunkEncoder.<init>(ChunkEncoder.java:93)
at com.ning.compress.lzf.impl.UnsafeChunkEncoder.<init>(UnsafeChunkEncoder.java:40)
at com.ning.compress.lzf.impl.UnsafeChunkEncoderLE.<init>(UnsafeChunkEncoderLE.java:13)
at com.ning.compress.lzf.impl.UnsafeChunkEncoders.createEncoder(UnsafeChunkEncoders.java:31)
at com.ning.compress.lzf.util.ChunkEncoderFactory.optimalInstance(ChunkEncoderFactory.java:44)
at com.ning.compress.lzf.LZFOutputStream.<init>(LZFOutputStream.java:61)
at org.apache.spark.io.LZFCompressionCodec.compressedOutputStream(CompressionCodec.scala:60)
at org.apache.spark.storage.BlockManager.wrapForCompression(BlockManager.scala:803)
at org.apache.spark.storage.BlockManager$$anonfun$5.apply(BlockManager.scala:471)
at org.apache.spark.storage.BlockManager$$anonfun$5.apply(BlockManager.scala:471)
at org.apache.spark.storage.DiskBlockObjectWriter.open(BlockObjectWriter.scala:117)
at org.apache.spark.storage.DiskBlockObjectWriter.write(BlockObjectWriter.scala:174)
at org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:164)
at org.apache.spark.scheduler.ShuffleMapTask$$anonfun$runTask$1.apply(ShuffleMapTask.scala:161)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:161)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:102)
at org.apache.spark.scheduler.Task.run(Task.scala:53)
at org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213)
at org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
folgt
Also ist meine grundlegende Frage, was ist notwendig, um eine Spark-Aufgabe zu schreiben, die nach Schlüssel mit einer fast unbegrenzten Menge an Eingabe gruppieren kann, ohne den Speicher zu verlieren?
In welcher Größe laufen Sie? – datasage
http://stackoverflow.com/questions/21138751/spark-java-lang-outofmemoryerror-java-heap-space/22742982#22742982 – samthebest
Warum haben Sie keine Antwort angenommen? :/Oder nicht einmal kommentiert. – gsamaras