Wenn Sie quaternion die am Ende brauchen, um Euler-Winkel, aber Sie müssen eine beliebige Drehung um, stieß ich auf eine Website mit Conversion-Code. Manchmal ist es der Trick, nur die richtige Reihenfolge zu finden. (Btw, die Ordnungen, die zweimal den gleichen Buchstaben haben, wie XYX, sind richtige Euler-Winkel, aber diejenigen wie XYZ sind Tait-Bryan-Winkel).
Hier ist der Link: http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
Und hier ist der Code:
///////////////////////////////
// Quaternion to Euler
///////////////////////////////
enum RotSeq{zyx, zyz, zxy, zxz, yxz, yxy, yzx, yzy, xyz, xyx, xzy,xzx};
void twoaxisrot(double r11, double r12, double r21, double r31, double r32, double res[]){
res[0] = atan2(r11, r12);
res[1] = acos (r21);
res[2] = atan2(r31, r32);
}
void threeaxisrot(double r11, double r12, double r21, double r31, double r32, double res[]){
res[0] = atan2(r31, r32);
res[1] = asin (r21);
res[2] = atan2(r11, r12);
}
void quaternion2Euler(const Quaternion& q, double res[], RotSeq rotSeq)
{
switch(rotSeq){
case zyx:
threeaxisrot(2*(q.x*q.y + q.w*q.z),
q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z,
-2*(q.x*q.z - q.w*q.y),
2*(q.y*q.z + q.w*q.x),
q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z,
res);
break;
case zyz:
twoaxisrot(2*(q.y*q.z - q.w*q.x),
2*(q.x*q.z + q.w*q.y),
q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z,
2*(q.y*q.z + q.w*q.x),
-2*(q.x*q.z - q.w*q.y),
res);
break;
case zxy:
threeaxisrot(-2*(q.x*q.y - q.w*q.z),
q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z,
2*(q.y*q.z + q.w*q.x),
-2*(q.x*q.z - q.w*q.y),
q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z,
res);
break;
case zxz:
twoaxisrot(2*(q.x*q.z + q.w*q.y),
-2*(q.y*q.z - q.w*q.x),
q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z,
2*(q.x*q.z - q.w*q.y),
2*(q.y*q.z + q.w*q.x),
res);
break;
case yxz:
threeaxisrot(2*(q.x*q.z + q.w*q.y),
q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z,
-2*(q.y*q.z - q.w*q.x),
2*(q.x*q.y + q.w*q.z),
q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z,
res);
break;
case yxy:
twoaxisrot(2*(q.x*q.y - q.w*q.z),
2*(q.y*q.z + q.w*q.x),
q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z,
2*(q.x*q.y + q.w*q.z),
-2*(q.y*q.z - q.w*q.x),
res);
break;
case yzx:
threeaxisrot(-2*(q.x*q.z - q.w*q.y),
q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z,
2*(q.x*q.y + q.w*q.z),
-2*(q.y*q.z - q.w*q.x),
q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z,
res);
break;
case yzy:
twoaxisrot(2*(q.y*q.z + q.w*q.x),
-2*(q.x*q.y - q.w*q.z),
q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z,
2*(q.y*q.z - q.w*q.x),
2*(q.x*q.y + q.w*q.z),
res);
break;
case xyz:
threeaxisrot(-2*(q.y*q.z - q.w*q.x),
q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z,
2*(q.x*q.z + q.w*q.y),
-2*(q.x*q.y - q.w*q.z),
q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z,
res);
break;
case xyx:
twoaxisrot(2*(q.x*q.y + q.w*q.z),
-2*(q.x*q.z - q.w*q.y),
q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z,
2*(q.x*q.y - q.w*q.z),
2*(q.x*q.z + q.w*q.y),
res);
break;
case xzy:
threeaxisrot(2*(q.y*q.z + q.w*q.x),
q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z,
-2*(q.x*q.y - q.w*q.z),
2*(q.x*q.z + q.w*q.y),
q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z,
res);
break;
case xzx:
twoaxisrot(2*(q.x*q.z - q.w*q.y),
2*(q.x*q.y + q.w*q.z),
q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z,
2*(q.x*q.z + q.w*q.y),
-2*(q.x*q.y - q.w*q.z),
res);
break;
default:
std::cout << "Unknown rotation sequence" << std::endl;
break;
}
}
dank dieser Antwort nützlich. effektiv, in meinem Motor verwende ich Quaternion, um meine Objekte zu drehen. So können Benutzer Funktion verwenden; SetRotation und GetRotation (mit 3 Euler-Winkeln). In dieser Funktion operiere ich auf Objektquaternion und speichere Euler-Winkel für den Benutzer. werden Sie wahrscheinlich mir zustimmen, wenn ich sage, dass es viel einfacher ist, seine Rotationen mit Euler-Winkeln anzugeben, die mit Quaternionen ... (Ich werde lesen/sehen alles, was Sie verknüpfen. Ich komme wieder) – user1466739
Ja, ich stimme zu, Euler-Winkel können nützlich sein, wenn Sie mit dem Benutzer kommunizieren. – Ali
Okay. Ich habe das Buch gelesen, das du mir erzählt hast, und jetzt habe ich alles verstanden. Vielen Dank. – user1466739