trainieren würde ich gerne wissen, ob ein Feed-Forward-neuronales Netz mit genetischen Algorithmen, Particle Swarm Optimization Ausbildung und simuliertem Ausglühen vor elastischem Ausbreitungstraining mit dem Ergebnis nicht verbessert. HierVerwenden Sie mehr Trainingsmethoden einen ANN mit Encog
ist der Code, ich verwende:
CalculateScore score = new TrainingSetScore(trainingSet);
StopTrainingStrategy stop = new StopTrainingStrategy();
StopTrainingStrategy stopGA = new StopTrainingStrategy();
StopTrainingStrategy stopSIM = new StopTrainingStrategy();
StopTrainingStrategy stopPSO = new StopTrainingStrategy();
Randomizer randomizer = new NguyenWidrowRandomizer();
//Backpropagation train = new Backpropagation((BasicNetwork) network, trainingSet, 0.2, 0.1);
// LevenbergMarquardtTraining train = new LevenbergMarquardtTraining((BasicNetwork) network, trainingSet);
int population = 500;
MLTrain trainGA = new MLMethodGeneticAlgorithm(new MethodFactory(){
@Override
public MLMethod factor() {
final BasicNetwork result = createNetwork();
((MLResettable)result).reset();
return result;
}}, score,population);
Date dStart = new Date();
int epochGA = 0;
trainGA.addStrategy(stopGA);
do{
trainGA.iteration();
if(writeOnStdOut)
System.out.println("Epoch GenetiC#" + epochGA + " Error:" + trainGA.getError());
epochGA++;//0000001
previousError = trainGA.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochGA < (maxIterations/5) && !stopGA.shouldStop() && totsecs < (secs/3));
NeuralPSO trainPSO = new NeuralPSO((BasicNetwork) network, randomizer, score, 100);
int epochPSO = 0;
trainPSO.addStrategy(stopPSO);
dStart = new Date();
do{
trainPSO.iteration();
if(writeOnStdOut)
System.out.println("Epoch Particle Swarm #" + epochPSO + " Error:" + trainPSO.getError());
epochPSO++;//0000001
previousError = trainPSO.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochPSO < (maxIterations/5) && !stopPSO.shouldStop() && totsecs < (secs/3));
MLTrain trainSIM = new NeuralSimulatedAnnealing((MLEncodable) network, score, startTemperature, stopTemperature, cycles);
int epochSA = 0;
trainSIM.addStrategy(stopSIM);
dStart = new Date();
do{
trainSIM.iteration();
if(writeOnStdOut)
System.out.println("Epoch Simulated Annealing #" + epochSA + " Error:" + trainSIM.getError());
epochSA++;//0000001
previousError = trainSIM.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epochSA < (maxIterations/5) && !stopSIM.shouldStop() && totsecs < (secs/3));
previousError = 0;
BasicTraining train = getTraining(method,(BasicNetwork) network, trainingSet);
//train.addStrategy(new Greedy());
//trainAlt.addStrategy(new Greedy());
HybridStrategy strAnneal = new HybridStrategy(trainSIM);
train.addStrategy(strAnneal);
//train.addStrategy(strGenetic);
//train.addStrategy(strPSO);
train.addStrategy(stop);
//
// Backpropagation train = new Backpropagation((ContainsFlat) network, trainingSet, 0.7, 0.3);
dStart = new Date();
int epoch = 1;
do {
train.iteration();
if(writeOnStdOut)
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;//0000001
if(Math.abs(train.getError()-previousError)<0.0000001) iterationWithoutImprovement++; else iterationWithoutImprovement = 0;
previousError = train.getError();
Date dtemp = new Date();
totsecs = ((double)(dtemp.getTime()-dStart.getTime())/1000);
} while(previousError > maximumAcceptedErrorTreshold && epoch < maxIterations && !stop.shouldStop() && totsecs < secs);//&& iterationWithoutImprovement < maxiter);
Wie Sie sehen können eine Folge von Trainingsalgorithmen ist, die die allgemeine Ausbildung verbessern sollte.
Bitte lassen Sie mich wissen, ob es Sinn macht und ob der Code korrekt ist. Es scheint zu funktionieren, aber ich will sicher sein, denn manchmal sehe ich, dass die Fortschritte von GA von PSO zurückgesetzt werden.
Dank