2016-07-14 26 views
10

Ich habe ein camera und ein 3D Objekt, ich habe die camera matrix wie in this angegeben berechnet. Das mit der Kamera aufgenommene Bild hat die Größe 1600x1200.. Aber in der Kameramatrix bekomme ich den Wert von Bild centers nicht richtig. Anstelle von 800, 600 bekomme ich einige andere Werte. Was sind die möglichen Gründe dafür?Bildmitte in der Kalibriermatrix

#include <iostream> 
    #include "opencv2/imgproc/imgproc.hpp" 
    #include "opencv2/highgui/highgui.hpp" 
    #include <math.h> 
    using namespace std; 
    using namespace cv; 
    int main() 
    { 
     int numberofpoints=30; 
     float p2d[30][2] = 
    {{72, 169}, {72, 184}, {71, 264}, {96, 168}, {94, 261}, {94, 276}, {257, 133}, 
    {254, 322}, {254, 337}, {278, 132}, {278, 146}, {275, 321}, {439, 228}, 
    {439, 243}, {437, 328}, {435, 431}, {461, 226}, {459, 326}, {459, 342}, 
    {457, 427}, {457, 444}, {612, 196}, {609, 291}, {605, 392}, {605, 406}, 
    {634, 191}, {633, 206}, {630, 288}, {630, 303}, {627, 390}}; 



     float p3d[30][3] = 
{{0, 0, 98}, {0, 0, 94}, {0, 0, 75}, {4, 4, 98}, {4, 4, 75}, {4, 4, 71}, 
{0, 96, 75}, {0, 96, 25}, {0, 96, 21}, {4, 100, 75}, 
{4, 100, 71}, {4, 100, 25}, {96, 0, 98}, {96, 0, 94}, 
{96, 0, 75}, {96, 0, 50}, {100, 4, 98}, {100, 4, 75}, 
{100, 4, 71}, {100, 4, 50}, {100, 4, 46}, {96, 96, 75}, 
{96, 96, 50}, {96, 96, 25}, {96, 96, 21}, {100, 100, 75}, 
{100, 100, 71}, {100, 100, 50}, {100, 100, 46}, {100, 100, 25}}; 


     Mat Matrix2D= Mat(30, 2, CV_64FC1, &p2d); 
     Mat Matrix3D= Mat(30, 3, CV_64FC1, &p3d); 
     Mat X_3D=Matrix3D.col(0); 
     Mat Y_3D=Matrix3D.col(1); 
     Mat Z_3D=Matrix3D.col(2); 
     Mat X_2D=Matrix2D.col(0); 
     Mat Y_2D=Matrix2D.col(1); 
     Mat z = Mat::zeros(numberofpoints,4, CV_64FC1); 
     Mat o = Mat::ones(numberofpoints,1, CV_64FC1); 
     Mat temp,temp1,C,D,AoddRows; 
     hconcat(X_3D, Y_3D,temp); 
     hconcat(Z_3D ,o,temp1); 
     hconcat(z, -X_2D.mul(X_3D),C); 
     hconcat(-X_2D.mul(Y_3D),-X_2D.mul(Z_3D),D); 
     hconcat(temp,temp1,AoddRows); 
     hconcat(AoddRows,C,AoddRows); 
     hconcat(AoddRows,D,AoddRows); 
     hconcat(AoddRows,-X_2D,AoddRows); 
     Mat A1,B1,C1,AevenRows; 
     hconcat(z,Matrix3D,A1); 
     hconcat(o,-Y_2D.mul(X_3D) ,B1); 
     hconcat(-Y_2D.mul(Y_3D),-Y_2D.mul(Z_3D),C1); 
     hconcat(A1,B1,AevenRows); 
     hconcat(AevenRows,C1,AevenRows); 
     hconcat(AevenRows,-Y_2D,AevenRows); 
     Mat A;          
     vconcat(AoddRows,AevenRows,A);    
     Mat w, u, EigenVectors; 
     SVD::compute(A, w, u, EigenVectors); 
     Mat EigenVector_SmallestEigenvalue=EigenVectors.row(EigenVectors.rows-1); 
     Mat P=Mat::zeros(3,4, CV_64FC1); 
     int k=0; 
     for(int i=0;i<P.rows;i++) 
     { 
     for(int j=0;j<P.cols;j++) 
     { 
      P.at<double>(i, j) = EigenVector_SmallestEigenvalue.at<double>(0,k); 
      k++; 
     } 
     } 
     double abs_lambda = sqrt(P.at<double>(2,0) * P.at<double>(2,0) + P.at<double>(2,1) * P.at<double>(2,1) + P.at<double>(2,2) * P.at<double>(2,2)); 
     P = P/abs_lambda; 
     Mat ProjectionMatrix = P;  
     Mat T= Mat::zeros(3,1, CV_64FC1); 
     Mat R = Mat::zeros(3,3, CV_64FC1); 
     Mat B = Mat::zeros(3,3, CV_64FC1); 
     Mat b = Mat::zeros(3,1,CV_64FC1); 
     P.row(0).colRange(0,3).copyTo(B.row(0)); 
     P.row(1).colRange(0,3).copyTo(B.row(1)); 
     P.row(2).colRange(0,3).copyTo(B.row(2)); 
     P.col(3).copyTo(b.col(0)); 
     Mat K=B*B.t(); 
     double Center_x = K.at<double>(0,2); 
     double Center_y = K.at<double>(1,2); 
     double beta = sqrt(K.at<double>(1,1)-Center_y*Center_y); 
     double gemma = (K.at<double>(0,1)-Center_x*Center_y)/beta; 
     double alpha = sqrt(K.at<double>(0,0)-Center_x*Center_x-gemma*gemma); 

     Mat CameraMatrix=Mat::zeros(3,3, CV_64FC1); 
     CameraMatrix.at<double>(0,0)=alpha; 
     CameraMatrix.at<double>(0,1)=gemma; 
     CameraMatrix.at<double>(0,2)=Center_x; 
     CameraMatrix.at<double>(1,1)=beta; 
     CameraMatrix.at<double>(1,2)=Center_y; 
     CameraMatrix.at<double>(2,2)=1; 
     R = CameraMatrix.inv()*B; 
     T = CameraMatrix.inv()*b; 
     Mat newMatrix2D=Mat::zeros(numberofpoints,2, CV_64FC1); 
     for(int i=0;i<numberofpoints;i++) 
     { 
     double num_u = P.at<double>(0,0) * Matrix3D.at<double>(i,0) 
      + P.at<double>(0,1) * Matrix3D.at<double>(i,1) 
      + P.at<double>(0,2) * Matrix3D.at<double>(i,2) 
      + P.at<double>(0,3); 

     double num_v = P.at<double>(1,0) * Matrix3D.at<double>(i,0) 
      + P.at<double>(1,1) * Matrix3D.at<double>(i,1) 
      + P.at<double>(1,2) * Matrix3D.at<double>(i,2) 
      + P.at<double>(1,3); 

     double den = P.at<double>(2,0) * Matrix3D.at<double>(i,0) 
      + P.at<double>(2,1) * Matrix3D.at<double>(i,1) 
      + P.at<double>(2,2) * Matrix3D.at<double>(i,2) 
      + P.at<double>(2,3); 

     newMatrix2D.at<double>(i,0)=num_u/den; 
     newMatrix2D.at<double>(i,1)=num_v/den; 
     } 

     Mat reprojMatrix=newMatrix2D; 
     Mat errorDiff=reprojMatrix-Matrix2D; 
     int size=errorDiff.rows; 
     double sum=0; 
     for(int i=0;i<errorDiff.rows;i++) 
     { 
     sum=sum + sqrt(errorDiff.at<double>(i,0) * errorDiff.at<double>(i,0) 
         + errorDiff.at<double>(i,1) * errorDiff.at<double>(i,1)); 
     } 
     sum=sum/size; 
     cout<<"Average Error="<<sum<<endl; 
     cout<<"Translation Matrix="<<T<<endl<<endl; 
     cout<<"Rotational Matrix="<<R<<endl<<endl; 
     cout<<"Camera Matrix="<<CameraMatrix<<endl; 
     return 0; 
    } 

Probe 1:

const int numberofpoints = 30; 
    float p2d[numberofpoints][2] = 
    {{72, 169}, {72, 184}, {71, 264}, {96, 168}, {94, 261}, {94, 276}, {257, 133}, 
    {254, 322}, {254, 337}, {278, 132}, {278, 146}, {275, 321}, {439, 228}, 
    {439, 243}, {437, 328}, {435, 431}, {461, 226}, {459, 326}, {459, 342}, 
    {457, 427}, {457, 444}, {612, 196}, {609, 291}, {605, 392}, {605, 406}, 
    {634, 191}, {633, 206}, {630, 288}, {630, 303}, {627, 390}}; 

    float p3d[numberofpoints][3] = 
    {{0, 0, 98}, {0, 0, 94}, {0, 0, 75}, {4, 4, 98}, {4, 4, 75}, {4, 4, 71}, 
    {0, 96, 75}, {0, 96, 25}, {0, 96, 21}, {4, 100, 75}, 
    {4, 100, 71}, {4, 100, 25}, {96, 0, 98}, {96, 0, 94}, 
    {96, 0, 75}, {96, 0, 50}, {100, 4, 98}, {100, 4, 75}, 
    {100, 4, 71}, {100, 4, 50}, {100, 4, 46}, {96, 96, 75}, 
    {96, 96, 50}, {96, 96, 25}, {96, 96, 21}, {100, 100, 75}, 
    {100, 100, 71}, {100, 100, 50}, {100, 100, 46}, {100, 100, 25}}; 

Probe 2:

const int numberofpoints = 24; 
    float p2d[24][2] = 
    {{41, 291}, {41, 494}, {41, 509}, {64, 285}, {64, 303}, 
    {64, 491}, {195, 146}, {216, 144}, {216, 160}, {431, 337}, 
    {431, 441}, {431, 543}, {431, 558}, {452, 336}, {452, 349}, 
    {452, 438}, {452, 457}, {452, 539}, {568, 195}, {566, 291}, 
    {588, 190}, {587, 209}, {586, 289}, {586, 302}}; 
    float p3d[24][3] = 
    {{0, 0, 75}, {0, 0, 25}, {0, 0, 21}, {4, 4, 75}, {4, 4, 71}, {4, 4, 25}, 
    {0, 96, 75 }, {4, 100, 75}, {4, 100, 71}, {96, 0, 75}, {96, 0, 50}, {96, 0, 25}, 
    {96, 0, 21}, {100, 4, 75}, {100, 4, 71}, {100, 4, 50}, {100, 4, 46}, {100, 4, 25}, {96, 96, 75 }, {96, 96, 50 }, {100, 100, 75}, {100, 100, 71}, {100, 100, 50}, {100, 100, 46}}; 

Probe 3:

const int numberofpoints = 33; 
    float p2d[numberofpoints][2] = 
    {{45, 310}, {43, 412}, {41, 513}, {41, 530}, {68, 305}, 
    {68, 321}, {66, 405}, {66, 423}, {64, 509}, {201, 70}, {201, 84}, 
    {200, 155}, {198, 257}, {218, 259}, {218, 271}, {441, 364}, 
    {439, 464}, {437, 569}, {437, 586}, {462, 361}, {462, 376}, 
    {460, 462}, {460, 479}, {459, 565}, {583, 117}, {583, 131}, 
    {580, 215}, {576, 313}, {603, 113}, {600, 214}, {599, 229}, 
    {596, 311}, {596, 323}}; 

    float p3d[numberofpoints][3] = 
    {{0, 0, 75}, {0, 0, 50}, {0, 0, 25}, {0, 0, 21}, {4, 4, 75}, {4, 4, 71}, 
    {4, 4, 50}, {4, 4, 46}, {4, 4, 25}, {0, 96, 98}, {0, 96, 94}, {0, 96, 75}, 
    {0, 96, 50}, {4, 100,75}, {4, 100,71}, {96, 0, 75}, {96, 0, 50}, {96, 0, 25}, 
    {96, 0, 21}, {100, 4,75}, {100, 4,71}, {100, 4,50}, {100, 4,46}, {100, 4,25},{96, 96,98}, {96, 96,94}, {96, 96,75}, {96, 96,50}, {100, 100, 98}, {100, 100, 75},{100, 100, 71}, {100, 100, 50}, {100, 100, 46}}; 

+1

Es gibt ein Problem in Ihren Eingangsdaten, oder es ist ein Fehler in Ihren Berechnungen, oder Sie werden die Ergebnisse falsch interpretiert. Ich denke, das deckt alle Möglichkeiten mit so wenig Information in Ihrer Frage ab. – rhashimoto

Antwort

0

Was andere Werte erhalten Sie? Im Allgemeinen befindet sich das Kamerazentrum nie genau in der Mitte des Bildes, aber es sollte einigermaßen nahe sein.

+0

In meinem Fall gibt es einen Unterschied von mehr als 100 Pixel – Deepak

1

EDIT:

ich einer der 3D-Koordinatenpunkt genommen haben Sets Sie zur Verfügung gestellt haben, und dann versucht, sie auf einer virtuellen Kamera zu projizieren (alle Fehler mit 3D-2D-Punktkorrespondenzen zu verhindern). Die Alpha, Beta und Gamma werden in diesem Fall korrekt geschätzt, aber u und v (das Sie suchen) waren aus irgendeinem Grund in allen meinen Experimenten negativ. Vielleicht gibt es einen Fehler in meinem Code, aber vielleicht liegt das an der Ungenauigkeit von OpenCV solveZ Implementierung (Ich hatte Probleme mit OpenCV Eigenwert/Vektor-Berechnung zuvor und versuchen, OpenBLAS zu verwenden, wenn hohe Genauigkeit benötigt wird).

Ein anderer möglicher Grund - wie Autoren behaupten, führt dieser Ansatz eine algebraische Minimierung durch, die physikalisch bedeutungslose Ergebnisse erzeugen kann. Vielleicht sollten Sie den verbleibenden Teil des Papiers überprüfen oder einen anderen Ansatz ausprobieren.

Hier ist der aktualisierte Code:

#include <opencv2/opencv.hpp> 
#include <iostream> 

int main() 
{ 
    // generate random 3d points 
    const int numberofpoints = 33; 

    float p3d_[numberofpoints][3] = 
     {{0, 0, 75}, {0, 0, 50}, {0, 0, 25}, {0, 0, 21}, {4, 4, 75}, {4, 4, 71}, 
     {4, 4, 50}, {4, 4, 46}, {4, 4, 25}, {0, 96, 98}, {0, 96, 94}, {0, 96, 75}, 
     {0, 96, 50}, {4, 100,75}, {4, 100,71}, {96, 0, 75}, {96, 0, 50}, {96, 0, 25}, 
     {96, 0, 21}, {100, 4,75}, {100, 4,71}, {100, 4,50}, {100, 4,46}, {100, 4,25},{96, 96,98}, {96, 96,94}, {96, 96,75}, {96, 96,50}, {100, 100, 98}, {100, 100, 75},{100, 100, 71}, {100, 100, 50}, {100, 100, 46}}; 

    std::vector<cv::Point3d> p3d; 

    for (int i = 0; i < numberofpoints; i++) { 
    cv::Point3d X(p3d_[i][0], p3d_[i][1], p3d_[i][2]); 
    p3d.push_back(X); 
    } 

    // set up virtual camera 
    const cv::Size imgSize(1600, 1200); 
    const double fx = 100; 
    const double fy = 120; 

    cv::Mat1d K = (cv::Mat1d(3, 3) << fx, 0, imgSize.width/2, 
     0, fy, imgSize.height/2, 
     0, 0, 1); 

    std::cout << "K = " << std::endl; 
    std::cout << K << std::endl << std::endl; 

    cv::Mat1d t = (cv::Mat1d(3, 1) << 10, 20, 20); 
    cv::Mat1d rvecDeg = (cv::Mat1d(3, 1) << 10, 20, 30); 

    // project point on camera 
    std::vector<cv::Point2d> p2d; 

    cv::projectPoints(p3d, 
        rvecDeg*CV_PI/180, 
        t, 
        K, 
        cv::Mat(), 
        p2d); 

    // estimate projection 
    cv::Mat1d G = cv::Mat1d::zeros(numberofpoints*2, 12); 

    for (int i = 0; i < numberofpoints; i++) { 
    const double X = p3d[i].x; 
    const double Y = p3d[i].y; 
    const double Z = p3d[i].z; 

    G(i*2 + 0, 0) = X; 
    G(i*2 + 0, 1) = Y; 
    G(i*2 + 0, 2) = Z; 
    G(i*2 + 0, 3) = 1; 

    G(i*2 + 1, 4) = X; 
    G(i*2 + 1, 5) = Y; 
    G(i*2 + 1, 6) = Z; 
    G(i*2 + 1, 7) = 1; 

    const double u = p2d[i].x; 
    const double v = p2d[i].y; 

    G(i*2 + 0, 8) = u*X; 
    G(i*2 + 0, 9) = u*Y; 
    G(i*2 + 0, 10) = u*Z; 
    G(i*2 + 0, 11) = u; 

    G(i*2 + 1, 8) = v*X; 
    G(i*2 + 1, 9) = v*Y; 
    G(i*2 + 1, 10) = v*Z; 
    G(i*2 + 1, 11) = v; 
    } 

    std::cout << "G = " << std::endl; 
    std::cout << G << std::endl << std::endl; 

    cv::Mat1d p; 
    cv::SVD::solveZ(G, p); 

    cv::Mat1d P = p.reshape(0, 3).clone(); 
    P /= P(2, 3); 

    std::cout << "p = " << std::endl; 
    std::cout << p << std::endl << std::endl; 

    std::cout << "P = " << std::endl; 
    std::cout << P << std::endl << std::endl; 

    cv::Mat1d B(3, 3); 
    cv::Mat1d b(3, 1); 

    P.colRange(0, 3).copyTo(B); 
    P.col(3).copyTo(b); 

    std::cout << "B = " << std::endl; 
    std::cout << B << std::endl << std::endl; 

    std::cout << "b = " << std::endl; 
    std::cout << b << std::endl << std::endl; 

    cv::Mat1d K_ = B*B.t(); 
    K_ /= K_(2, 2); 

    std::cout << "K_ = " << std::endl; 
    std::cout << K_ << std::endl << std::endl; 

    const double u = K_(0, 2); 
    const double v = K_(1, 2); 
    const double ku = K_(0, 0); 
    const double kv = K_(1, 1); 
    const double kc = K_(0, 1); 

    const double beta = sqrt(kv - v*v); 
    const double gamma = (kc - u*v)/beta; 
    const double alpha = sqrt(ku - u*u - gamma*gamma); 

    cv::Mat1d A = (cv::Mat1d(3, 3) << alpha, gamma, u, 
             0, beta, v, 
             0,  0, 1); 

    std::cout << "A = " << std::endl; 
    std::cout << A << std::endl << std::endl; 

    return 0; 
} 

und Ausgang:

K = 
[100, 0, 800; 
0, 120, 600; 
0, 0, 1] 

G = 
[0, 0, 75, 1, 0, 0, 0, 0, 0, 0, 63156.71331987197, 842.0895109316264; 
0, 0, 0, 0, 0, 0, 75, 1, 0, 0, 46451.70410142483, 619.3560546856644; 
0, 0, 50, 1, 0, 0, 0, 0, 0, 0, 42144.23132613153, 842.8846265226306; 
0, 0, 0, 0, 0, 0, 50, 1, 0, 0, 31473.60945095979, 629.4721890191959; 
0, 0, 25, 1, 0, 0, 0, 0, 0, 0, 21113.32803626328, 844.5331214505311; 
0, 0, 0, 0, 0, 0, 25, 1, 0, 0, 16261.14346086196, 650.4457384344785; 
0, 0, 21, 1, 0, 0, 0, 0, 0, 0, 17744.50634900177, 844.9764928096083; 
0, 0, 0, 0, 0, 0, 21, 1, 0, 0, 13777.82037617329, 656.0866845796805; 
4, 4, 75, 1, 0, 0, 0, 0, 3374.871998456306, 3374.871998456306, 63278.84997105574, 843.7179996140766; 
0, 0, 0, 0, 4, 4, 75, 1, 2506.953106676701, 2506.953106676701, 47005.37075018814, 626.7382766691752; 
4, 4, 71, 1, 0, 0, 0, 0, 3375.547822963469, 3375.547822963469, 59915.97385760157, 843.8869557408673; 
0, 0, 0, 0, 4, 4, 71, 1, 2513.243523511581, 2513.243523511581, 44610.07254233056, 628.3108808778952; 
4, 4, 50, 1, 0, 0, 0, 0, 3380.337247599766, 3380.337247599766, 42254.21559499707, 845.0843118999414; 
0, 0, 0, 0, 4, 4, 50, 1, 2557.822370597248, 2557.822370597248, 31972.7796324656, 639.4555926493119; 
4, 4, 46, 1, 0, 0, 0, 0, 3381.587616222724, 3381.587616222724, 38888.25758656133, 845.396904055681; 
0, 0, 0, 0, 4, 4, 46, 1, 2569.460510014068, 2569.460510014068, 29548.79586516178, 642.365127503517; 
4, 4, 25, 1, 0, 0, 0, 0, 3391.684639092943, 3391.684639092943, 21198.02899433089, 847.9211597732357; 
0, 0, 0, 0, 4, 4, 25, 1, 2663.441243136111, 2663.441243136111, 16646.50776960069, 665.8603107840277; 
0, 96, 98, 1, 0, 0, 0, 0, 0, 76956.82972653268, 78560.09701250211, 801.6336429847155; 
0, 0, 0, 0, 0, 96, 98, 1, 0, 65682.8899983677, 67051.28354000035, 684.1967708163302; 
0, 96, 94, 1, 0, 0, 0, 0, 0, 76853.25603860538, 75252.14653780111, 800.5547504021395; 
0, 0, 0, 0, 0, 96, 94, 1, 0, 65937.37528926283, 64563.67997073651, 686.8476592631544; 
0, 96, 75, 1, 0, 0, 0, 0, 0, 76268.94727818707, 59585.11506108365, 794.4682008144487; 
0, 0, 0, 0, 0, 96, 75, 1, 0, 67373.04865228917, 52635.19425960092, 701.8025901280123; 
0, 96, 50, 1, 0, 0, 0, 0, 0, 75153.33695072016, 39142.36299516675, 782.8472599033349; 
0, 0, 0, 0, 0, 96, 50, 1, 0, 70114.15427855898, 36517.78868674947, 730.3557737349894; 
4, 100, 75, 1, 0, 0, 0, 0, 3182.802966382433, 79570.07415956081, 59677.55561967062, 795.7007415956082; 
0, 0, 0, 0, 4, 100, 75, 1, 2830.826944396773, 70770.67360991932, 53078.00520743949, 707.7067360991932; 
4, 100, 71, 1, 0, 0, 0, 0, 3176.842851499092, 79421.07128747732, 56388.96061410889, 794.2107128747731; 
0, 0, 0, 0, 4, 100, 71, 1, 2846.678125949429, 71166.95314873573, 50528.53673560237, 711.6695314873573; 
96, 0, 75, 1, 0, 0, 0, 0, 94501.57967461165, 0, 73829.35912079035, 984.3914549438714; 
0, 0, 0, 0, 96, 0, 75, 1, 69392.97525695754, 0, 54213.26191949808, 722.8434922599744; 
96, 0, 50, 1, 0, 0, 0, 0, 102665.427189569, 0, 53471.57666123386, 1069.431533224677; 
0, 0, 0, 0, 96, 0, 50, 1, 76872.21110081286, 0, 40037.60994834002, 800.7521989668005; 
96, 0, 25, 1, 0, 0, 0, 0, 134150.4060603281, 0, 34935.00157821043, 1397.400063128417; 
0, 0, 0, 0, 96, 0, 25, 1, 105716.8927391909, 0, 27530.44081749762, 1101.217632699905; 
96, 0, 21, 1, 0, 0, 0, 0, 150007.0124893856, 0, 32814.03398205309, 1562.573046764433; 
0, 0, 0, 0, 96, 0, 21, 1, 120243.7808209231, 0, 26303.32705457694, 1252.539383551283; 
100, 4, 75, 1, 0, 0, 0, 0, 98699.75231231008, 3947.990092492403, 74024.81423423256, 986.9975231231008; 
0, 0, 0, 0, 100, 4, 75, 1, 73361.21263523313, 2934.448505409325, 55020.90947642484, 733.6121263523312; 
100, 4, 71, 1, 0, 0, 0, 0, 99628.75712124966, 3985.150284849986, 70736.41755608725, 996.2875712124966; 
0, 0, 0, 0, 100, 4, 71, 1, 74265.21217550985, 2970.608487020394, 52728.30064461199, 742.6521217550985; 
100, 4, 50, 1, 0, 0, 0, 0, 107383.6098967354, 4295.344395869415, 53691.80494836769, 1073.836098967354; 
0, 0, 0, 0, 100, 4, 50, 1, 81811.33387099921, 3272.453354839968, 40905.6669354996, 818.113338709992; 
100, 4, 46, 1, 0, 0, 0, 0, 109823.0621321851, 4392.922485287403, 50518.60858080514, 1098.230621321851; 
0, 0, 0, 0, 100, 4, 46, 1, 84185.12534995917, 3367.405013998367, 38725.15766098122, 841.8512534995917; 
100, 4, 25, 1, 0, 0, 0, 0, 141059.7182762867, 5642.388731051467, 35264.92956907167, 1410.597182762867; 
0, 0, 0, 0, 100, 4, 25, 1, 114581.0097655446, 4583.240390621784, 28645.25244138615, 1145.810097655446; 
96, 96, 98, 1, 0, 0, 0, 0, 83904.83905262669, 83904.83905262669, 85652.85653288974, 874.0087401315279; 
0, 0, 0, 0, 96, 96, 98, 1, 72995.44277461393, 72995.44277461393, 74516.18116575171, 760.3691955688951; 
96, 96, 94, 1, 0, 0, 0, 0, 84021.59669072446, 84021.59669072446, 82271.1467596677, 875.2249655283798; 
0, 0, 0, 0, 96, 96, 94, 1, 73575.81721996517, 73575.81721996517, 72042.98769454923, 766.4147627079706; 
96, 96, 75, 1, 0, 0, 0, 0, 84712.67045349024, 84712.67045349024, 66181.77379178925, 882.4236505571899; 
0, 0, 0, 0, 96, 96, 75, 1, 77010.98050603706, 77010.98050603706, 60164.82852034145, 802.1977136045526; 
96, 96, 50, 1, 0, 0, 0, 0, 86206.34878960505, 86206.34878960505, 44899.13999458597, 897.9827998917193; 
0, 0, 0, 0, 96, 96, 50, 1, 84435.70020728504, 84435.70020728504, 43976.92719129429, 879.5385438258859; 
100, 100, 98, 1, 0, 0, 0, 0, 87539.46210370047, 87539.46210370047, 85788.67286162646, 875.3946210370046; 
0, 0, 0, 0, 100, 100, 98, 1, 76664.75192364832, 76664.75192364832, 75131.45688517536, 766.6475192364833; 
100, 100, 75, 1, 0, 0, 0, 0, 88416.27638616599, 88416.27638616599, 66312.20728962449, 884.16276386166; 
0, 0, 0, 0, 100, 100, 75, 1, 81008.14162095707, 81008.14162095707, 60756.10621571781, 810.0814162095708; 
100, 100, 71, 1, 0, 0, 0, 0, 88614.85267838663, 88614.85267838663, 62916.5454016545, 886.1485267838663; 
0, 0, 0, 0, 100, 100, 71, 1, 81991.80970097007, 81991.80970097007, 58214.18488768875, 819.9180970097007; 
100, 100, 50, 1, 0, 0, 0, 0, 90038.77512167525, 90038.77512167525, 45019.38756083763, 900.3877512167526; 
0, 0, 0, 0, 100, 100, 50, 1, 89045.35592350175, 89045.35592350175, 44522.67796175087, 890.4535592350175; 
100, 100, 46, 1, 0, 0, 0, 0, 90415.3917433265, 90415.3917433265, 41591.08020193018, 904.153917433265; 
0, 0, 0, 0, 100, 100, 46, 1, 90910.96508045508, 90910.96508045508, 41819.04393700934, 909.1096508045508] 

p = 
[0.006441365659365744; 
-0.006935698812720837; 
-0.03488896901596035; 
-0.7622591852949104; 
0.004771957238156334; 
-0.01133107207303337; 
-0.02452697177582621; 
-0.6456783687203944; 
-1.258567018901194e-05; 
1.123537587555102e-05; 
4.154374841821949e-05; 
0.0008967755121116598] 

P = 
[7.182807260423624, -7.734041261217285, -38.90490824599617, -849.9999999999995; 
5.321239455925471, -12.63534956072988, -27.35018011148848, -719.9999999999993; 
-0.0140343597913107, 0.01252863813051139, 0.04632569451009583, 1] 

B = 
[7.182807260423624, -7.734041261217285, -38.90490824599617; 
5.321239455925471, -12.63534956072988, -27.35018011148848; 
-0.0140343597913107, 0.01252863813051139, 0.04632569451009583] 

b = 
[-849.9999999999995; 
-719.9999999999993; 
1] 

K_ = 
[649999.9999999985, 479999.9999999995, -799.9999999999992; 
479999.9999999995, 374400.0000000002, -600.0000000000002; 
-799.9999999999992, -600.0000000000002, 1] 

A = 
[99.99999999999883, -1.940255363782255e-12, -799.9999999999992; 
0, 119.9999999999995, -600.0000000000002; 
0, 0, 1] 
+0

Ich berechnete einen anderen Satz von 3D-2D entsprechenden Punkten (in der Frage auch aktualisiert). Auch nachdem ich für die oben genannten Punkte falsche Ergebnisse erhalten habe, bekomme ich Image center als '(1238, 67)' (mit Ihrem Code auch. Tatsächliche Bildgröße ist '1600x1200'. – Deepak

+0

Ich berechnete 3d Punkte, indem ich einen von die Objektecke als Ursprung (0,0,0) Und ich fand 2d Bildpunkte manuell mit Gimp – Deepak

+0

Ich habe einige Beispiel 3d-2d Korrespondenz Daten und ich bekomme verschiedene 'K' Matrix für alles – Deepak