2013-01-11 10 views

Antwort

5

Dies ist eine ziemlich abgestanden Frage, aber ich fand es, wenn genau das gleiche Problem zu lösen versuchen. Es ist nur fair, die Lösung, die ich getroffen habe, zu teilen, damit der nächste arme Saft es nicht selbst herausfinden muss.

Ich habe keine Ahnung, ob dies ein besonders guter Weg ist, Dinge zu tun, und ich vermute, es würde kämpfen, wenn Sie anfangen würden, gebogene Zellen zu verwenden, aber es funktionierte für meine Zwecke.

Das grundlegende Problem ist, dass Sie nur einen Eckpunkt für die unendlichen Kanten haben, so dass Sie den Richtungsvektor selbst berechnen müssen. Die zu verwendende Richtung ist senkrecht zum Vektor zwischen den beiden durch die Kante getrennten Punkten.

#include <vector> 
#include <boost/polygon/voronoi.hpp> 
using boost::polygon::voronoi_builder; 
using boost::polygon::voronoi_diagram; 

typedef boost::polygon::point_data<int> point; 
typedef voronoi_diagram<double>::cell_type cell_type; 
typedef voronoi_diagram<double>::edge_type edge_type; 
typedef voronoi_diagram<double>::vertex_type vertex_type; 

int main(int argc, char *argv[]) 
{ 
    std::vector<point> points; 

    // Populate with random points 
    for (int i = 0; i < 50; i++) 
    { 
     points.push_back(point(60 + rand() % 500, 60 + rand() % 500)); 
    } 

    voronoi_diagram<double> vd; 
    construct_voronoi(points.begin(), points.end(), &vd); 

    // vd now contains the voronoi diagram. Let's visualise it 
    // pseudocode 'draw_line(x1, y1, x2, y2)' 

    for (voronoi_diagram<double>::const_cell_iterator it = vd.cells().begin(); 
     it != vd.cells().end(); ++it) 
    { 
     const cell_type& cell = *it; 
     const edge_type* edge = cell.incident_edge(); 

     do 
     { 
     if (edge->is_primary()) 
     { 
      // Easy finite edge case 
      if (edge->is_finite()) 
      { 
       // Without this check each edge would be drawn twice 
       // as they are really half-edges 
       if (edge->cell()->source_index() < 
        edge->twin()->cell()->source_index()) 
       { 
        draw_line(edge->vertex0()->x(), edge->vertex0()->y(), 
          edge->vertex1()->x(), edge->vertex1()->y()); 
       } 
      } 
      else 
      { 
       // This covers the infinite edge case in question. 
       const vertex_type* v0 = edge->vertex0(); 
       // Again, only consider half the half-edges, ignore edge->vertex1() 
       // to avoid overdrawing the lines 
       if (v0) 
       { 
        // Direction of infinite edge if perpendicular to direction 
        // between the points owning the two half edges. 
        // Take the rotated right vector and multiply by a large 
        // enough number to reach your bounding box 
        point p1 = points[edge->cell()->source_index()]; 
        point p2 = points[edge->twin()->cell()->source_index()]; 
        int end_x = (p1.y() - p2.y()) * 640; 
        int end_y = (p1.x() - p2.x()) * -640; 

        draw_line(v0->x(), v0->y(), 
          end_x, end_y); 
       } 
      } 
     } 
     edge = edge->next(); 
     } while (edge != cell.incident_edge()); 
    } 
} 
2

fand ich diesen Code-Segment hier: http://www.boost.org/doc/libs/1_55_0/libs/polygon/example/voronoi_visualizer.cpp

void clip_infinite_edge(
     const edge_type& edge, std::vector<point_type>* clipped_edge) { 
    const cell_type& cell1 = *edge.cell(); 
    const cell_type& cell2 = *edge.twin()->cell(); 
    point_type origin, direction; 
    // Infinite edges could not be created by two segment sites. 
    if (cell1.contains_point() && cell2.contains_point()) { 
     point_type p1 = retrieve_point(cell1); 
     point_type p2 = retrieve_point(cell2); 
     origin.x((p1.x() + p2.x()) * 0.5); 
     origin.y((p1.y() + p2.y()) * 0.5); 
     direction.x(p1.y() - p2.y()); 
     direction.y(p2.x() - p1.x()); 
    } else { 
     origin = cell1.contains_segment() ? 
      retrieve_point(cell2) : 
      retrieve_point(cell1); 
     segment_type segment = cell1.contains_segment() ? 
      retrieve_segment(cell1) : 
      retrieve_segment(cell2); 
     coordinate_type dx = high(segment).x() - low(segment).x(); 
     coordinate_type dy = high(segment).y() - low(segment).y(); 
     if ((low(segment) == origin)^cell1.contains_point()) { 
     direction.x(dy); 
     direction.y(-dx); 
     } else { 
     direction.x(-dy); 
     direction.y(dx); 
     } 
    } 
    coordinate_type side = xh(brect_) - xl(brect_); 
    coordinate_type koef = 
     side/(std::max)(fabs(direction.x()), fabs(direction.y())); 
    if (edge.vertex0() == NULL) { 
     clipped_edge->push_back(point_type(
      origin.x() - direction.x() * koef, 
      origin.y() - direction.y() * koef)); 
    } else { 
     clipped_edge->push_back(
      point_type(edge.vertex0()->x(), edge.vertex0()->y())); 
    } 
    if (edge.vertex1() == NULL) { 
     clipped_edge->push_back(point_type(
      origin.x() + direction.x() * koef, 
      origin.y() + direction.y() * koef)); 
    } else { 
     clipped_edge->push_back(
      point_type(edge.vertex1()->x(), edge.vertex1()->y())); 
    } 
    } 

Es könnte einige Klassenvariablen oder Methoden fehlt, aber die Logik ist das, was hier wichtig ist.

+0

Jesus Chris, warum haben wir das nicht in der Bibliothek selbst implementiert? o.O. – PiotrK