Man kann durchschnittliche Entfernungen | x - Clusterzentrum | berechnen für x im Cluster, genau wie für K-means. Das folgende macht diese Brute-Force. (Es muss eine eingebaute in scipy.cluster oder scipy.spatial.distance aber ich kann es auch nicht finden.)
Auf Ihre Frage 2, zu übergeben. Jegliche Links zu guten Tutorien zum hierarchischen Clustering wären willkommen.
#!/usr/bin/env python
""" cluster cities: pdist linkage fcluster plot
util: clusters() avdist()
"""
from __future__ import division
import sys
import numpy as np
import scipy.cluster.hierarchy as hier # $scipy/cluster/hierarchy.py
import scipy.spatial.distance as dist
import pylab as pl
from citiesin import citiesin # 1000 US cities
__date__ = "27may 2010 denis"
def clusterlists(T):
""" T = hier.fcluster(Z, t) e.g. [a b a b a c]
-> [ [0 2 4] [1 3] [5] ] sorted by len
"""
clists = [ [] for j in range(max(T) + 1)]
for j, c in enumerate(T):
clists[c].append(j)
clists.sort(key=len, reverse=True)
return clists[:-1] # clip the []
def avdist(X, to=None):
""" av dist X vecs to "to", None: mean(X) """
if to is None:
to = np.mean(X, axis=0)
return np.mean(dist.cdist(X, [to]))
#...............................................................................
Ndata = 100
method = "average"
t = 0
crit = "maxclust"
# 'maxclust': Finds a minimum threshold `r` so that the cophenetic distance
# between any two original observations in the same flat cluster
# is no more than `r` and no more than `t` flat clusters are formed.
# but t affects cluster sizes only weakly ?
# t 25: [10, 9, 8, 7, 6
# t 20: [12, 11, 10, 9, 7
plot = 0
seed = 1
exec "\n".join(sys.argv[1:]) # Ndata= t= ...
np.random.seed(seed)
np.set_printoptions(2, threshold=100, edgeitems=10, suppress=True) # .2f
me = __file__.split('/') [-1]
# biggest US cities --
cities = np.array(citiesin(n=Ndata)[0]) # N,2
if t == 0: t = Ndata // 4
#...............................................................................
print "# %s Ndata=%d t=%d method=%s crit=%s " % (me, Ndata, t, method, crit)
Y = dist.pdist(cities) # n*(n-1)/2
Z = hier.linkage(Y, method) # n-1
T = hier.fcluster(Z, t, criterion=crit) # n
clusters = clusterlists(T)
print "cluster sizes:", map(len, clusters)
print "# average distance to centre in the biggest clusters:"
for c in clusters:
if len(c) < len(clusters[0]) // 3: break
cit = cities[c].T
print "%.2g %s" % (avdist(cit.T), cit)
if plot:
pl.plot(cit[0], cit[1])
if plot:
pl.title("scipy.cluster.hierarchy of %d US cities, %s t=%d" % (
Ndata, crit, t))
pl.grid(False)
if plot >= 2:
pl.savefig("cities-%d-%d.png" % (Ndata, t), dpi=80)
pl.show()