dieser Artikel die Details erklären und hat auch eine Live-Demo html5:
Calculating/Computing the Bounding Box of Cubic Bezier
ich eine Javascript in Snap.svg festgestellt, dass zu berechnen: here
die bezierBBox und curveDim Funktionen zu sehen.
Ich schreibe eine JavaScript-Funktion um.
//(x0,y0) is start point; (x1,y1),(x2,y2) is control points; (x3,y3) is end point.
function bezierMinMax(x0, y0, x1, y1, x2, y2, x3, y3) {
var tvalues = [], xvalues = [], yvalues = [],
a, b, c, t, t1, t2, b2ac, sqrtb2ac;
for (var i = 0; i < 2; ++i) {
if (i == 0) {
b = 6 * x0 - 12 * x1 + 6 * x2;
a = -3 * x0 + 9 * x1 - 9 * x2 + 3 * x3;
c = 3 * x1 - 3 * x0;
} else {
b = 6 * y0 - 12 * y1 + 6 * y2;
a = -3 * y0 + 9 * y1 - 9 * y2 + 3 * y3;
c = 3 * y1 - 3 * y0;
}
if (Math.abs(a) < 1e-12) {
if (Math.abs(b) < 1e-12) {
continue;
}
t = -c/b;
if (0 < t && t < 1) {
tvalues.push(t);
}
continue;
}
b2ac = b * b - 4 * c * a;
if (b2ac < 0) {
if (Math.abs(b2ac) < 1e-12) {
t = -b/(2 * a);
if (0 < t && t < 1) {
tvalues.push(t);
}
}
continue;
}
sqrtb2ac = Math.sqrt(b2ac);
t1 = (-b + sqrtb2ac)/(2 * a);
if (0 < t1 && t1 < 1) {
tvalues.push(t1);
}
t2 = (-b - sqrtb2ac)/(2 * a);
if (0 < t2 && t2 < 1) {
tvalues.push(t2);
}
}
var j = tvalues.length, mt;
while (j--) {
t = tvalues[j];
mt = 1 - t;
xvalues[j] = (mt * mt * mt * x0) + (3 * mt * mt * t * x1) + (3 * mt * t * t * x2) + (t * t * t * x3);
yvalues[j] = (mt * mt * mt * y0) + (3 * mt * mt * t * y1) + (3 * mt * t * t * y2) + (t * t * t * y3);
}
xvalues.push(x0,x3);
yvalues.push(y0,y3);
return {
min: {x: Math.min.apply(0, xvalues), y: Math.min.apply(0, yvalues)},
max: {x: Math.max.apply(0, xvalues), y: Math.max.apply(0, yvalues)}
};
}
http: // Stapelüberlauf.com/questions/2587751/ein-Algorithmus-zu-finden-Bounding-Box-of-Closed-Bezier-Kurven – JAre