2016-07-25 29 views
0
import java.util.Collections; 
import java.util.Vector; 


public class Metaheuristic { 

    private static int[] DATA; 
    private static int NUM_CHROMOSOMES ; 
    private static int MAX_POWER; 
    private static int MAX_NUMBER; 
    private static int FITNESS_THRESHOLD; 
    private static float MUTATE = (float) .05; 
    private Vector population; 
    private boolean done = true; 
    int numRuns = 0; 

    public void GeneticAlgorithm (int[] data, int target, int n){ 

     NUM_CHROMOSOMES = n; 
    MAX_POWER = data.length; 
    MAX_NUMBER = (int) Math.pow(2, MAX_POWER) - 1; 
    FITNESS_THRESHOLD = target; 
    DATA = new int[data.length]; 
     DATA = data; 



     Metaheuristic s = new Metaheuristic(); 
     s.start(); 
     //System.out.println("s"); 
     } 





    public Metaheuristic(){ 

     generateRandomPopulation(); 
    } 


    private void generateRandomPopulation(){ 
    System.out.println("***Randomly Generating population with: " + NUM_CHROMOSOMES + " Chromosome(s)***"); 

    population = new Vector(); 

    for(int i = 0; i < NUM_CHROMOSOMES; ++i){ 
      int randomValue = (int) (Math.random()*MAX_NUMBER); 
      population.add(new Chromosome(randomValue, MAX_POWER)); 
    } 

     System.out.println("First Population: " + population +"\n"); 
    } 


    public void start(){ 
    Collections.sort(population); 
    Chromosome fitess = (Chromosome) population.lastElement(); 

    done = fitess.fitness(DATA, FITNESS_THRESHOLD) >= MAX_POWER? true:false; 

    if(done){ 
      System.out.println("DONE, solution found: " + fitess); 
    } 
     else{ 
      numRuns++; 
      System.out.println("FITESS: " + fitess + " fitness: " + fitess.fitness(DATA, FITNESS_THRESHOLD)); 
      generateNewPopulation(); 
      start(); 
     } 
    } 

    private void generateNewPopulation(){ 

     System.out.println("***Generating New Population"); 
     Vector temp = new Vector(); 

     for(int i = 0; i < population.size()/2; ++i){ 
      Chromosome p1 = selectParent(); 
      Chromosome p2 = selectParent(); 
      temp.add(cross1(p1, p2)); 
      temp.add(cross2(p1, p2)); 
     } 

     population.clear(); 
     population.addAll(temp); 
     System.out.println("New Population: " + population + "\n"); 
    } 

    private Chromosome selectParent(){ 
     int delta = population.size(); 
     delta = NUM_CHROMOSOMES - NUM_CHROMOSOMES/2; 

     int num = (int) (Math.random()*10 + 1); 
     int index; 

     if(num >= 4){ 
      index = (int) (Math.random()*delta + NUM_CHROMOSOMES/2); 
     } 
     else{ 
      index = (int) (Math.random()*delta);  
     } 

     return (Chromosome) population.get(index); 
    } 

    private Chromosome cross1(Chromosome parent1, Chromosome parent2){ 
     String bitS1 = parent1.getBitString(); 
     String bitS2 = parent2.getBitString(); 
     int length = bitS1.length(); 

     String newBitString = bitS1.substring(0, length/2) + bitS2.substring(length/2, length); 
     Chromosome offspring = new Chromosome(); 
     offspring.setBitString(newBitString); 

     if(shouldMutate()){ 
      mutate(offspring); 
     } 

     return offspring; 
    } 

    private Chromosome cross2(Chromosome parent1, Chromosome parent2){ 
     String bitS1 = parent1.getBitString(); 
     String bitS2 = parent2.getBitString(); 
     int length = bitS1.length(); 

     String newBitString = bitS2.substring(0, length/2) + bitS1.substring(length/2, length); 
     Chromosome offspring = new Chromosome(); 
     offspring.setBitString(newBitString); 

     if(shouldMutate()){ 
      mutate(offspring); 
     } 

     return offspring; 
    } 

    private boolean shouldMutate(){ 
     double num = Math.random(); 
     int number = (int) (num*100); 
     num = (double) number/100; 
     return (num <= MUTATE); 
    } 

    private void mutate(Chromosome offspring){ 
     String s = offspring.getBitString(); 
     int num = s.length(); 
     int index = (int) (Math.random()*num); 
     String newBit = flip(s.substring(index, index+1)); 
     String newBitString = s.substring(0, index) + newBit + s.substring(index+1, s.length()); 
     offspring.setBitString(newBitString); 
    } 

    private String flip(String s){ 
     return s.equals("0")? "1":"0"; 
    } 

    public static void main(String[] args) { 
     double average = 0; 
     int sum = 0; 
     for(int i = 0; i < 10; ++i){ 
      Metaheuristic s = new Metaheuristic(); 
      s.start(); 
      sum = sum + s.numRuns; 
      average = (double) sum/(double)(i+1); 
      System.out.println("Number of runs: " + s.numRuns); 
     } 
     System.out.println("average runs: " + average); 
    } 
} 

    import java.lang.Comparable; 

public class Chromosome implements Comparable{ 
    protected String bitString; 
    public static int[] DATA; 
    public int TARGET; 

    public Chromosome(){ 
    } 


    public Chromosome(int value, int length){ 
    bitString = convertIntToBitString(value, length); 
    } 


    public void setBitString(String s){ 
    bitString = s; 
    } 


    public String getBitString(){ 
    return bitString; 
    } 


    public int compareTo(Object o) { 
    Chromosome c = (Chromosome) o; 
    int num = countOnes(this.bitString) - countOnes(c.getBitString()); 
    return num; 
    } 


    public int fitness(int[] data, int target){ 
    DATA = new int[data.length]; 
     System.arraycopy(data, 0, DATA, 0, data.length); 
     TARGET = target; 
     return countOnes(bitString); 
    } 


    public boolean equals(Object o){ 
    if(o instanceof Chromosome){ 
      Chromosome c = (Chromosome) o; 
      return c.getBitString().equals(bitString); 
     } 
    return false; 
    } 


    public int hashCode(){ 
    return bitString.hashCode(); 
    } 


    public String toString(){ 
    return "Chromosome: " + bitString; 
    } 


    public static int countOnes(String bits){ 
    int sum = 0; 

    for(int i = 0; i < bits.length(); ++ i){ 
      String test = bits.substring(i, i+1); 
      sum = sum + (DATA[i]*Integer.parseInt(test)); 
     } 
    return sum; 
    } 


    public static String convertIntToBitString(int val, int length){ 
    int reval = val; 

    StringBuffer bitString = new StringBuffer(length); 
     for(int i = length-1; i >=0; --i){ 
      if(reval - (Math.pow(2, i)) >= 0){ 
       bitString.append("1"); 
       reval = (int) (reval - Math.pow(2, i)); 
      } 
      else{ 
       bitString.append("0"); 
      } 
    } 
    return bitString.toString(); 
    } 


    /* public static void main(String[] args){ 
    //System.out.println(convertIntToBitString(2046, 10)); 
    Chromosome c = new Chromosome(1234, 10); 
    System.out.println(c.fitness()); 
    }*/ 


} 

Meine Funktion Fitness ist f(x) = s · (C − P(x)) + (1 − s) · P(x), in der C ist mein Zielwert zu erreichen und P(*x) = (Sigma) wixi, wo wi ist die Menge des Elements und xi 0 oder 1 (das Element ausgewählt ist oder nicht). auch s ist 0 oder 1, hängt von p (x) -Wert. Bitte hilf mir, diese Fitness zu schreiben. Ich habe es gerade ausprobiert aber das Programm läuft mit Fehlern.Implementierung

Antwort

0

Sie haben mehrere Probleme in Ihrem Code, und offensichtlich haben Sie es nicht debuggen. Hier sind ein paar Tipps.

Zuerst NUM_CHROMOSOMES ist 0, weil es ein nicht initialisiertes Feld ist (von GeneticAlgorithm das Sie nicht verwenden).

Da NUM_CHROMOSOMES 0 ist, dies für Schleife ist nutzlos:

for (int i = 0; i < NUM_CHROMOSOMES; ++i) {

Dann dieser Zeile:

int randomValue = (int) (Math.random() * MAX_NUMBER);

Da MAX_NUMBER niemals manuell initialisiert (das gleiche wie NUM_CHROMOSOMES, ihre Wert ist 0, und so ist randomValue.

Auf jeden Fall ist population leer und da sie Leere nicht testen, diese Zeile:

Chromosome fitess = (Chromosome) population.lastElement();

... löst eine Ausnahme, weil es in Ihrem leeren population Vektor nicht so etwas wie ein letztes Element .

Als Randbemerkung, StringBuffer sind Vector veraltete Klassen, und Sie müssen nie Comparable, importieren, da es zu dem java.lang Paket gehört.