1

Ich versuche den Inverted Multi-Index zu verstehen, von diesem paper, der auch eine kleinere Version here hat. Zu diesem Zweck habe ich ein Spielzeugbeispiel erstellt und möchte, dass jemand seine/ihre Meinung (en) überprüft und/oder mit mir teilt.Der invertierte Multiindex

Das Beispiel:

Assume we have N = 6 points in M = 4 dimensions. We use two blocks to 
create sub-vecrtors. Let the points be these: 

p0 = (0, 0, 1, 1) 
p1 = (2, 2, 3, 3) 
p2 = (4, 4, 5, 5) 
p3 = (6, 6, 7, 7) 
p4 = (8, 8, 9, 9) 
p5 = (10, 10, 11, 11) // p5^1 = (10, 10), which is appended in D^1 etc. 

_________________________________________________________________________ 

We run k-means twice, once for D^1 and once for D^2, by requiring 3 
centroids and we get: 
U = { u1 = (1, 1), u2 = (5, 5), u3 = (9, 9) } 
V = { v1 = (2, 2), v2 = (6, 6), v3 = (10, 10) } 

Now we have to assign the points to the Wi,j. All we be empty, except: 

W1,1 = (u1, v1): p0, p1 
W2,2 = (u2, v2): p2, p3 
W3,3 = (u3, v3): p4, p5 

Note: We store the PQ-copressed version with every point (for example 
instead of storing just p0, store [p0, (u1, v1)]), which will be used 
during reranking. 
_________________________________________________________________________ 

Assume T = 4 (which sets L = 2 for the sake of the example) and the query 
is: (5, 5, 0, 0). Posing the query... 


q^1 VS U 
i u_α(i) r 
1 u2  0 
2 u1 32 <-- |d1((5,5), (1,1))|^2 = (5 - 1)^2 + (5 - 1)^2 = 32 

q^2 VS V 
j v_β(j) s 
1 v1  8 
2 v2 72 

Invoke the Multi Sequence Algorithm which will output: 
W2,1 --> [u2 v1] --> empty 
W1,1 --> [u1 v1] --> p0, p1 
W2,2 --> [u2 v2] --> p4, p5 
// stop when the points that lie in the Ws returned so far are >= T 

So the candidate list is {p0, p1, p2, p3} 
_________________________________________________________________________ 

Rerank the candidate list, by computing the distance between the query and 
the PQ-compressed representation (sum the distances of the subvectors). 

Ist es richtig, bitte?

Antwort

0

Ja das scheint richtig, wie Babenko selbst in einer E-Mail-Konversation erwähnt.